Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992671

RESUMO

Growth differentiation factor (GDF) family members have been implicated in the development and maintenance of healthy nucleus pulposus (NP) tissue, making them promising therapeutic candidates for treatment of intervertebral disc (IVD) degeneration and associated back pain. GDF6 has been shown to promote discogenic differentiation of mesenchymal stem cells, but its effect on NP cells remains largely unknown. Our aim was to investigate GDF6 signalling in adult human NP cells derived from degenerate tissue and determine the signal transduction pathways critical for GDF6-mediated phenotypic changes and tissue homeostatic mechanisms. This study demonstrates maintained expression of GDF6 receptors in human NP and annulus fibrosus (AF) cells across a range of degeneration grades at gene and protein level. We observed an anabolic response in NP cells treated with recombinant GDF6 (increased expression of matrix and NP-phenotypic markers; increased glycosaminoglycan production; no change in catabolic enzyme expression), and identified the signalling pathways involved in these responses (SMAD1/5/8 and ERK1/2 phosphorylation, validated by blocking studies). These findings suggest that GDF6 promotes a healthy disc tissue phenotype in degenerate NP cells through SMAD-dependent and -independent (ERK1/2) mechanisms, which is important for development of GDF6 therapeutic strategies for treatment of degenerate discs.


Assuntos
Fator 6 de Diferenciação de Crescimento/farmacologia , Degeneração do Disco Intervertebral/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Núcleo Pulposo , Regeneração/efeitos dos fármacos , Adulto , Feminino , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia , Núcleo Pulposo/fisiologia , Proteínas Smad/metabolismo
2.
Acta Derm Venereol ; 97(6): 675-684, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27882385

RESUMO

Keloid disease is a fibroproliferative tumour characterised by aggressive local invasion, evident from a clinically and histologically active migrating margin. During combined laser capture microdissection and microarray analysis-based in situ gene expression profiling, we identified upregulation of the polypeptide growth factor neuregulin-1 (NRG1) and ErbB2 oncogene in keloid margin dermis, leading to the hypothesis that NRG1 contributed to keloid margin migration through ErbB2-mediated signalling. The aim of this study was to probe this hypothesis through functional in vitro studies. Exogenous NRG1 addition to keloid and normal skin fibroblasts altered cytokine expression profiles, significantly increased in vitro migration and keloid fibroblast Src and protein tyrosine kinase 2 (PTK2/FAK) gene expression. ErbB2 siRNA knockdown attenuated both keloid fibroblast migration and Src/PTK2 expression, which were not recovered following NRG1 administration, suggesting the NRG1/ErbB2/Src/PTK2 signaling pathway may be a novel regulator of keloid fibroblast migration, and representing a potential new therapeutic target.


Assuntos
Movimento Celular , Fibroblastos/enzimologia , Queloide/enzimologia , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Pele/enzimologia , Estudos de Casos e Controles , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Fibroblastos/patologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Queloide/genética , Queloide/patologia , Neuregulina-1/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/genética , Transdução de Sinais , Pele/patologia , Fatores de Tempo , Transfecção , Regulação para Cima , Quinases da Família src/genética , Quinases da Família src/metabolismo
3.
Wound Repair Regen ; 23(4): 483-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053202

RESUMO

Skin substitutes are heterogeneous biomaterials designed to accelerate wound healing through provision of replacement extracellular matrix. Despite growing evidence for their use in chronic wounds, the role of skin substitutes in acute wound management and their influence on fibrogenesis remains unclear. Skin substitute characteristics including biocompatibility, porosity, and elasticity strongly influence cellular behavior during wound healing. Thus, we hypothesize that structural and biomechanical variation between biomaterials may induce differential scar formation after cutaneous injury. The following human prospective cohort study was designed to investigate this premise. Four 5-mm full thickness punch biopsies were harvested from 50 volunteers. In all cases, site 1 healed by secondary intention, site 2 was treated with collagen-GAG scaffold (CG), and decellularised dermis (DCD) was applied to site 3 while tissue extracted from site 4 was replaced (autograft). Healing tissue was assessed weekly with optical coherence tomography (OCT), before being excised on days 7, 14, 21, or 28 depending on study group allocation for later histological and immunohistochemical evaluation. Extracted RNA was used in microarray analysis and polymerase chain reaction of highlighted genes. Autograft treatment resulted in minimal fibrosis confirmed immunohistochemically and with OCT through significantly lower collagen I levels (p = 0.047 and 0.03) and reduced mean grayscale values (p = 0.038 and 0.015), respectively. DCD developed intermediate scar formation with partial rete ridge reformation and reduced fasiculonodular fibrosis. It was uniquely associated with late up-regulation of matrix metalloproteinases 1 and 3, oncostatin M, and interleukin-10 (p = 0.007, 0.04, 0.019, 0.019). Regenerated dermis was significantly thicker in DCD and autografts 28 days post-injury compared with control and CG samples (p = 0.003 and < 0.0001). In conclusion, variable fibrotic outcomes were observed in skin substitute-treated wounds with reduced scarring in autograft and DCD samples compared with controls. OCT enabled concurrent assessment of wound morphology and quantification of dermal fibrosis.


Assuntos
Transplante de Pele/métodos , Pele Artificial , Pele/lesões , Tomografia de Coerência Óptica/métodos , Cicatrização/fisiologia , Ferimentos e Lesões/cirurgia , Doença Aguda , Adulto , Biópsia , Cicatriz/prevenção & controle , Feminino , Fibrose/patologia , Fibrose/terapia , Seguimentos , Voluntários Saudáveis , Humanos , Masculino , Estudos Prospectivos , Pele/patologia , Fatores de Tempo , Transplante Autólogo , Ferimentos e Lesões/patologia , Adulto Jovem
4.
Biomacromolecules ; 15(4): 1288-98, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24661009

RESUMO

Bombyx mori silk fibroin (BMSF) has received considerable research interest as a potential biomaterial owing to its excellent mechanical properties and benign, versatile material fabrication options, including electrospinning. Despite this, characterizations of regenerated BMSF aqueous solutions and electrospun materials resulting from them are still very limited in the literature. This report details the rheological characterization of regenerated aqueous BMSF solutions under shear and elongational deformation. Well-characterized regenerated BMSF solutions were then systematically electrospun over a range of concentrations and process parameters to determine their effects on electrospinning processing windows and fiber morphology. BMSF solutions could not be electrospun successfully if BMSF concentration was below 20 wt % or the relaxation time measured using the CaBER rheometer was below 0.001 s. Electrospun BMSF fiber diameter was found to increase with solution concentration when stable electrospinning was achieved. An upper threshold of 30 wt % BMSF solution was identified for the formation of fibers with a circular cross section. Adding small amount of high molecular weight poly(ethylene oxide) was an effective rheological modifier that greatly improved the electrospinnability of BMSF solutions. Electrospinning BMSF-PEO solutions over a range of parameters significantly altered the fiber products. Increasing voltage from 0.5 to 1 kV/cm was found to decrease fiber diameter by approximately 50% (p < 0.001). Flow rate was found to have a significant effect on fiber diameter, which decreased with spinneret height. The results presented here provide valuable guidance in the production of BMSF electrospun materials with specific properties for tissue engineering and regenerative medicine.


Assuntos
Bombyx , Fibroínas/química , Reologia/métodos , Animais , Materiais Biocompatíveis , Elasticidade , Eletroquímica/métodos , Seda , Soluções , Viscosidade
5.
ACS Appl Mater Interfaces ; 16(12): 14633-14644, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483312

RESUMO

Osteoarthritis (OA) is the most common form of arthritis, with intra-articular (IA) delivery of therapeutics being the current best option to treat pain and inflammation. However, IA delivery is challenging due to the rapid clearance of therapeutics from the joint and the need for repeated injections. Thus, there is a need for long-acting delivery systems that increase the drug retention time in joints with the capacity to penetrate OA cartilage. As pharmaceutical utility also demands that this is achieved using biocompatible materials that provide colloidal stability, our aim was to develop a nanoparticle (NP) delivery system loaded with the COX-2 inhibitor celecoxib that can meet these criteria. We devised a reproducible and economical method to synthesize the colloidally stable albumin NPs loaded with celecoxib without the use of any of the following conditions: high temperatures at which albumin denaturation occurs, polymer coatings, oils, Class 1/2 solvents, and chemical protein cross-linkers. The spherical NP suspensions were biocompatible, monodisperse with average diameters of 72 nm (ideal for OA cartilage penetration), and they were stable over 6 months at 4 °C. Moreover, the NPs loaded celecoxib at higher levels than those required for the therapeutic response in arthritic joints. For these reasons, they are the first of their kind. Labeled NPs were internalized by primary human articular chondrocytes cultured from the knee joints of OA patients. The NPs reduced the concentration of inflammatory mediator prostaglandin E2 released by the primaries, an indication of retained bioactivity following NP synthesis. Similar results were observed in lipopolysaccharide-stimulated human THP-1 monocytes. The IA administration of these NPs is expected to avoid side-effects associated with oral administration of celecoxib and to maintain a high local concentration in the knee joint over a sustained period. They are now ready for evaluation by IA administration in animal models of OA.


Assuntos
Nanopartículas , Osteoartrite , Animais , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Injeções Intra-Articulares , Osteoartrite/tratamento farmacológico , Articulação do Joelho , Albuminas
6.
Biofabrication ; 16(1)2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37852239

RESUMO

Current treatments for repairing articular cartilage defects are limited. However, pro-chondrogenic hydrogels formulated using articular cartilage matrix components (such as hyaluronic acid (HA) and collagen type II (Col II)), offer a potential solution if they could be injected into the defect via minimally invasive arthroscopic procedures, or used as bioinks to 3D print patient-specific customised regenerative scaffolds-potentially combined with cells. However, HA and Col II are difficult to incorporate into injectable/3D printable hydrogels due to poor physicochemical properties. This study aimed to overcome this by developing an articular cartilage matrix-inspired pro-chondrogenic hydrogel with improved physicochemical properties for both injectable and 3D printing (3DP) applications. To achieve this, HA was methacrylated to improve mechanical properties and mixed in a 1:1 ratio with Col I, a Col I/Col II blend or Col II. Col I possesses superior mechanical properties to Col II and so was hypothesised to enhance hydrogel mechanical properties. Rheological analysis showed that the pre-gels had viscoelastic and shear thinning properties. Subsequent physicochemical analysis of the crosslinked hydrogels showed that Col II inclusion resulted in a more swollen and softer polymer network, without affecting degradation time. While all hydrogels exhibited exemplary injectability, only the Col I-containing hydrogels had sufficient mechanical stability for 3DP applications. To facilitate 3DP of multi-layered scaffolds using methacrylated HA (MeHA)-Col I and MeHA-Col I/Col II, additional mechanical support in the form of a gelatin slurry support bath freeform reversible embedding of suspended hydrogels was utilised. Biological analysis revealed that Col II inclusion enhanced hydrogel-embedded MSC chondrogenesis, thus MeHA-Col II was selected as the optimal injectable hydrogel, and MeHA-Col I/Col II as the preferred bioink. In summary, this study demonstrates how tailoring biomaterial composition and physicochemical properties enables development of pro-chondrogenic hydrogels with potential for minimally invasive delivery to injured articular joints or 3DP of customised regenerative implants for cartilage repair.


Assuntos
Cartilagem Articular , Ácido Hialurônico , Humanos , Ácido Hialurônico/química , Cartilagem Articular/metabolismo , Hidrogéis/farmacologia , Hidrogéis/química , Colágeno Tipo II/metabolismo , Condrogênese , Engenharia Tecidual
7.
Langmuir ; 28(1): 459-67, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22107484

RESUMO

The interfacial viscoelastic behavior of natural silk fibroin at both the air/water and oil/water interfaces is reported. This natural multiblock copolymer is found to be strongly amphiphilic and forms stable films at these interfaces. The result is an interfacial layer that is rheologically complex with strong surface elastic moduli that are only slightly frequency-dependent. The kinetics of surface viscoelastic evolution are reported as functions of time for various concentrations of the spread films. Films deposited by Langmuir-Blodgett deposition were studied by scanning electron microscopy (SEM) to reveal a fibrous structure at the interface. The production of stable O/W emulsions by silk fibroin further confirms the generation of the elastic films at the oil/water interfaces.


Assuntos
Fibroínas/química , Reologia , Seda/química , Ar , Microscopia Eletrônica de Varredura , Óleos , Água
8.
Bioengineering (Basel) ; 9(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735475

RESUMO

The ability to regenerate damaged cartilage capable of long-term performance in an active joint remains an unmet clinical challenge in regenerative medicine. Biomimetic scaffold biomaterials have shown some potential to direct effective cartilage-like formation and repair, albeit with limited clinical translation. In this context, type II collagen (CII)-containing scaffolds have been recently developed by our research group and have demonstrated significant chondrogenic capacity using murine cells. However, the ability of these CII-containing scaffolds to support improved longer-lasting cartilage repair with reduced calcified cartilage formation still needs to be assessed in order to elucidate their potential therapeutic benefit to patients. To this end, CII-containing scaffolds in presence or absence of hyaluronic acid (HyA) within a type I collagen (CI) network were manufactured and cultured with human mesenchymal stem cells (MSCs) in vitro under chondrogenic conditions for 28 days. Consistent with our previous study in rat cells, the results revealed enhanced cartilage-like formation in the biomimetic scaffolds. In addition, while the variable chondrogenic abilities of human MSCs isolated from different donors were highlighted, protein expression analysis illustrated consistent responses in terms of the deposition of key cartilage extracellular matrix (ECM) components. Specifically, CI/II-HyA scaffolds directed the greatest cell-mediated synthesis and accumulation in the matrices of type II collagen (a principal cartilage ECM component), and reduced deposition of type X collagen (a key protein associated with hypertrophic cartilage formation). Taken together, these results provide further evidence of the capability of these CI/II-HyA scaffolds to direct enhanced and longer-lasting cartilage repair in patients with reduced hypertrophic cartilage formation.

9.
Biomater Sci ; 10(4): 970-983, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35018931

RESUMO

A major challenge in cartilage tissue engineering (TE) is the development of instructive and biomimetic scaffolds capable of driving effective mesenchymal stem cell (MSC) chondrogenic differentiation and robust de novo matrix formation. Type I collagen-based scaffolds are one of the most commonly selected materials given collagen's intrinsic ability to act as an instructive and active biomaterial. However, the chondrogenic potential of these scaffolds does not offer significant improvement over traditional treatments. We propose that taking a biomimetic approach to scaffold development might lead to an improved outcome for enhanced cartilage repair. Therefore, this study aimed to develop innovative type II collagen (CII)-containing scaffolds for enhanced cartilage repair, by incorporating CII and/or hyaluronic acid (HyA) into a type I collagen (CI) framework. Moreover, focus was placed on understanding the potential synergistic effects played by CII in combination with HyA, in terms of MSC chondrogenesis and cartilage-like formation, when both molecules are incorporated into scaffold biomaterials. The newly developed CII-containing scaffold exhibited a highly porous interconnected structure with 99% porosity and similar mechanical properties to previously optimised collagen-based scaffolds. Although all scaffold variants sustained early cartilaginous matrix deposition, the CII-containing scaffolds in the presence of HyA performed best, offering enhanced deposition and distribution of sulphated glycosaminoglycans (sGAG) in vitro by day 28. Taken together, the combination of CII and HyA resulted in the development of a biomimetic scaffold with improved chondrogenic benefits. These simple "off-the-shelf" implants hold great promise to direct enhanced tissue regeneration for the treatment of focal cartilage defects.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Cartilagem , Diferenciação Celular , Colágeno Tipo II , Porosidade , Engenharia Tecidual , Alicerces Teciduais
10.
Nat Rev Rheumatol ; 18(2): 67-84, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34934171

RESUMO

Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos/patologia , Matriz Extracelular/metabolismo , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais
11.
Mater Sci Eng C Mater Biol Appl ; 120: 111657, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545824

RESUMO

Core-shell scaffolds offer a promising regenerative solution to debilitating injuries to anterior cruciate ligament (ACL) thanks to a unique biphasic structure. Nevertheless, current core-shell designs are impaired by an imbalance between permeability, biochemical and mechanical cues. This study aimed to address this issue by creating a porous core-shell construct which favors cell infiltration and matrix production, while providing mechanical stability at the site of injury. The developed core-shell scaffold combines an outer shell of electrospun poly(caprolactone) fibers with a freeze-dried core of type I collagen doped with proteoglycans (biglycan, decorin) or glycosaminoglycans (chondroitin sulphate, dermatan sulphate). The aligned fibrous shell achieved an elastic modulus akin of the human ACL, while the porous collagen core is permeable to human mesenchymal stem cell (hMSC). Doping of the core with the aforementioned biomolecules led to structural and mechanical changes in the pore network. Assessment of cellular metabolic activity and scaffold contraction shows that hMSCs actively remodel the matrix at different degrees, depending on the core's doping formulation. Additionally, immunohistochemical staining and mRNA transcript levels show that the collagen-chondroitin sulphate formulation has the highest matrix production activity, while the collagen-decorin formulation featured a matrix production profile more characteristic of the undamaged tissue. Together, this demonstrates that scaffold doping with target biomolecules leads to distinct levels of cell-mediated matrix remodeling. Overall, this work resulted in the development of a versatile and robust platform with a combination of mechanical and biochemical features that have a significant potential in promoting the repair process of ACL tissue.


Assuntos
Glicosaminoglicanos , Alicerces Teciduais , Colágeno , Humanos , Poliésteres , Engenharia Tecidual
12.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637520

RESUMO

Bioactive metabolites have wide-ranging biological activities and are a potential source of future research and therapeutic tools. Here, we use nanovibrational stimulation to induce osteogenic differentiation of mesenchymal stem cells, in the absence of off-target, nonosteogenic differentiation. We show that this differentiation method, which does not rely on the addition of exogenous growth factors to culture media, provides an artifact-free approach to identifying bioactive metabolites that specifically and potently induce osteogenesis. We first identify a highly specific metabolite, cholesterol sulfate, an endogenous steroid. Next, a screen of other small molecules with a similar steroid scaffold identified fludrocortisone acetate with both specific and highly potent osteogenic-inducing activity. Further, we implicate cytoskeletal contractility as a measure of osteogenic potency and cell stiffness as a measure of specificity. These findings demonstrate that physical principles can be used to identify bioactive metabolites and then enable optimization of metabolite potency can be optimized by examining structure-function relationships.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
13.
J Tissue Eng ; 11: 2041731420919334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489577

RESUMO

Stem cell-based regenerative strategies are promising for intervertebral disc degeneration. Stimulation of bone-marrow- and adipose-derived multipotent stem cells with recombinant human growth differentiation factor 6 (rhGDF6) promotes anabolic nucleus pulposus like phenotypes. In comparison to mesenchymal stem cells, adipose-derived multipotent stem cells exhibit greater NP-marker gene expression and proteoglycan-rich matrix production. To understand these response differences, we investigated bone morphogenetic protein receptor profiles in donor-matched human mesenchymal stem cells and adipose-derived multipotent stem cells, determined differences in rhGDF6 signalling and their importance in NP-like differentiation between cell populations. Bone morphogenetic protein receptor expression in mesenchymal stem cells and adipose-derived multipotent stem cells revealed elevated and less variable expression of BMPR2 in adipose-derived multipotent stem cells, which corresponded with increased downstream pathway activation (SMAD1/5/8, ERK1/2). Inhibitor studies demonstrated SMAD1/5/8 signalling was required for rhGDF6-induced nucleus-pulposus-like adipose-derived multipotent stem cell differentiation, while ERK1/2 contributed significantly to critical nucleus pulposus gene expression, aggrecan and type II collagen production. These data inform cell regenerative therapeutic choices for intervertebral disc degeneration regeneration and identify further potential optimisation targets.

14.
JOR Spine ; 2(1): e1045, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31463459

RESUMO

Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain and disability, leading to imbalance between anabolic and catabolic processes, altered extracellular matrix composition, loss of tissue hydration, inflammation, and impaired mechanical functionality. Current treatments aim to manage symptoms rather than treat underlying pathology. Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has focused on understanding the molecular process of degeneration and the identification of various factors that may have the ability to halt and even reverse the degenerative process. One such family of growth factors, the growth differentiation factor (GDF) family, have shown particular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review outlines our current understanding of IVD degeneration, and in this context, aims to discuss recent advancements in the use of GDF family members as anabolic factors for disc regeneration. An increasing body of evidence indicates that GDF family members are central to IVD homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells and even act as chemotactic signals mobilizing resident cell populations during disc injury repair. The understanding of GDF signaling and its interplay with inflammatory and catabolic processes may be critical for the future development of effective IVD regeneration therapies.

15.
Biomed Mater ; 14(2): 025008, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30609417

RESUMO

The tissue engineering applications of coaxial electrospinning are growing due to the potential increased functionality of the fibres compared to basic electrospinning. Previous studies of core and shell scaffolds have placed the active elements in the core, however, the surface response to a biomaterial affects the subsequent behaviour, thus here hydroxyapatite (HA) was added to the shell. Coaxial electrospun polycaprolactone (PCL)-polylactic acid (PLA)/HA (core-shell) scaffolds were produced in 2D sheets using a plate collector, or 3D tubes for bone tissue engineering using a rotating needle collector. The scaffolds include high hydroxyapatite content while retaining their structural and mechanical integrity. The effect of the collector type on fibre diameter, fibre alignment and mechanical properties have been evaluated, and the impact of HA incorporation on bioactivity, BMP-2 release, cell behaviour and mechanical properties for up to 12 weeks degradation were assessed. Fibre uniformity in coaxial electrospinning depends on the relative flow rate of the core and shell solutions. Using a rotating needle collector increased fibre alignment compared to a stationary collector, without affecting fibre diameter significantly, while HA content increased fibre non-uniformity. Coaxial PCL-PLA/HA fibres exhibited significantly higher bioactivity compared to PCL-PLA scaffolds due to the surface exposure of the HA particles. Apatite formation increased with increasing SBF immersion time. Coaxial tubular scaffolds with and without HA incorporation showed gradual reductions in their mechanical properties over 12 weeks in PBS or SBF but still retained their structural integrity. Coaxial scaffolds with and without HA exhibited gradual and sustained BMP-2 release and supported MSCs proliferation and differentiation with no significant difference between the two scaffolds types. These materials therefore show potential applications as bone tissue engineering scaffolds.


Assuntos
Proteína Morfogenética Óssea 2/química , Osso e Ossos/metabolismo , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/química , Materiais Biocompatíveis , Proteína Morfogenética Óssea 2/metabolismo , Adesão Celular , Diferenciação Celular , Proliferação de Células , Durapatita/química , Eletroquímica , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Proteínas Recombinantes/química , Estresse Mecânico , Resistência à Tração
16.
Acta Biomater ; 96: 271-280, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325577

RESUMO

Cartilage engineering with stem cells in 3D scaffolds is a promising future therapy to treat cartilage defects. One challenge in the field is to design carriers to efficaciously deliver biological factors in 3D scaffolds containing stem cells to appropriately guide differentiation of these cells in same scaffolds and promote specific tissue synthesis. Graphene-based 2D nanomaterials have recently attracted extensive interest for their biomedical applications as they can adsorb a plethora of biological molecules, thus offering high potential as delivery carriers. This study utilized graphene oxide (GO) flakes to adsorb transforming growth factor ß3 (TGF-ß3), which were then incorporated into a collagen hydrogel. Human mesenchymal stem cells (hMSCs) were encapsulated in the same gel and chondrogenic differentiation assessed. The study showed GO flakes adsorbed > 99% TGF-ß3 with <1.7% release. Adsorbed TGF-ß3 retained a similar conformation to its dissolved counterpart (free protein) but importantly demonstrated greater conformational stability. Smad2 phosphorylation was promoted, and higher chondrogenic gene expression and cartilage-specific extracellular matrix deposition were achieved compared to exogenously delivering TGF-ß3 in culture media. Effects were sustained in long-term 28-day culture. The results demonstrate GO flakes as highly-efficient for delivering GFs in 3D to guide cells in the same scaffold and induce tissue formation. The ability of GO flakes to provide sustained local delivery makes this material attractive for tissue engineering strategies, in particular for regionally-specific MSC differentiation (e.g. osteochondral tissue engineering). STATEMENT OF SIGNIFICANCE: Cartilage engineering involving stem cells in 3D scaffolds is a promising future therapy to treat cartilage defects which can lead to debilitating conditions such as osteoarthritis. However, this field faces the challenge to design delivery carriers to efficaciously deliver biological factors inside these 3D cell-containing scaffolds for appropriately-guided cell differentiation. Graphene-based 2D nanomaterials offer high potential as delivery carriers, but to date studies using them to deliver biological factors have been restricted to 2D substrates, non-scaffold cell masses, or acellular 3D scaffolds. Our study for the first time demonstrated simultaneously incorporating both human mesenchymal stem cells (hMSCs) and GO (graphene oxide)-adsorbed growth factor TGFß3 into a 3D scaffold, where GO-adsorbed TGFß3 enhanced chondrogenic differentiation of hMSCs and cartilage-tissue synthesis throughout the scaffold without needing to repeatedly supply TGFß3 exogenously.


Assuntos
Diferenciação Celular , Condrogênese , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Grafite/química , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Adsorção , Adulto , Idoso , Animais , Bovinos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Colágeno/farmacologia , Liberação Controlada de Fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta3/farmacologia
17.
J Tissue Eng Regen Med ; 13(8): 1406-1417, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066515

RESUMO

Currently, there is no effective long-term treatment for intervertebral disc (IVD) degeneration, making it an attractive candidate for regenerative therapies. Hydrogel delivery of adipose stem cells (ASCs) in combination with controlled release of bioactive molecules is a promising approach to halt IVD degeneration and promote regeneration. Growth differentiation factor 6 (GDF6) can induce ASC differentiation into anabolic nucleus pulposus (NP) cells and hence holds promise for IVD regeneration. Here, we optimised design of novel poly(DL-lactic acid-co-glycolic acid) (PLGA)-polyethylene glycol-PLGA microparticles to control GDF6 delivery and investigated effect of released GDF6 on human ASCs differentiation to NP cells. Recombinant human (rh)GDF6 was loaded into microparticles and total protein and rhGDF6 release assessed. The effect of microparticle loading density on distribution and gel formation was investigated through scanning electron microscopy. ASC differentiation to NP cells was examined after 14 days in hydrogel culture by quantitative polymerase chain reaction, histological, and immunohistochemical staining in normoxic and IVD-like hypoxic conditions. RhGDF6 microparticles were distributed throughout gels without disrupting gelation and controlled rhGDF6 release over 14 days. Released GDF6 significantly induced NP differentiation of ASCs, with expression comparable with or exceeding media supplemented rhGDF6. Microparticle-delivered rhGDF6 also up-regulated sulphated glycosaminoglycan and aggrecan secretion in comparison with controls. In hypoxia, microparticle-delivered rhGDF6 continued to effectively induce NP gene expression and aggrecan production. This study demonstrates the effective encapsulation and controlled delivery of rhGDF6, which maintained its activity and induced ASC differentiation to NP cells and synthesis of an NP-like matrix suggesting suitability of microparticles for controlled growth factor release in regenerative strategies for treatment of IVD degeneration.


Assuntos
Sistemas de Liberação de Medicamentos , Fator 6 de Diferenciação de Crescimento/farmacologia , Microesferas , Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Colágeno/ultraestrutura , Preparações de Ação Retardada/farmacologia , Géis , Glicosaminoglicanos/metabolismo , Humanos , Núcleo Pulposo/metabolismo , Tamanho da Partícula , Proteínas Recombinantes/farmacologia , Solubilidade , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
18.
J Appl Biomater Funct Mater ; 14(1): e9-18, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26689817

RESUMO

PURPOSE: Widespread application of collagen-glycosaminoglycan dermal templates in the treatment of cutaneous defects has identified the interval between initial engraftment and skin graft application as important for improvement. The aim of this study was to evaluate the effect of hyaluronan supplementation of Integra® dermal template on human dermal fibroblasts and keratinocytes in both in vitro and ex vivo models. METHODS: This study utilized in vitro and ex vivo cell culture techniques to investigate supplementing Integra® Regeneration Template with hyaluronan (HA), as a strategy to decrease this interval. In vitro, Integra® was HA supplemented at 0.15, 1, 1.5 and 2 mg/mL-1. Primary human dermal fibroblast (PHDF) and keratinocyte proliferation, PHDF viability, migration and HA-induced signal transduction (phosphor-MAPK Array) were assessed. Ex vivo, wound models (wound diameter 4 mm) were created within 8 mm skin biopsies. Wounds were filled with Integra® or HA supplemented Integra®. Re-epithelialization was compared through hematoxylin and eosin-stained cross-sections at 7, 14 and 21 days in culture. Model viability was assessed through lactate dehydrogenase (LDH) assays. RESULTS: In vitro, PHDF and keratinocyte proliferation were enhanced significantly (p<0.001) when supplemented with HA. S-Phase and G2/M PHDFs in HA supplemented scaffolds increased. PHDF viability was enhanced to 72 hours culture with 1.5 mg/mL-1 HA (p = 0.016). PHDF migration was maximally enhanced at 1 mg/mL-1 and 1.5 mg/mL-1, whilst increased levels of phosphorylated Erk/MAPK proteins indicated increased metabolic activity. In ex vivo models, HA supplementation accelerated re-epithelialization at all concentrations. This ex vivo model provides a robust model for preclinical assessment of skin substitutes. CONCLUSIONS: HA supplementation to Integra® demonstrates increased in vitro growth, viability and migration. Whilst ex vivo data suggest HA supplementation of Integra® may increase rapidity of wound closure.


Assuntos
Ciclo Celular/efeitos dos fármacos , Derme/metabolismo , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Queratinócitos/metabolismo , Pele Artificial , Células Cultivadas , Derme/citologia , Feminino , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Masculino
19.
J Invest Dermatol ; 136(7): 1500-1512, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27025872

RESUMO

Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-ß1, transforming growth factor-ß2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease.


Assuntos
Aldeído Redutase/metabolismo , Epiderme/metabolismo , Queloide/metabolismo , Tretinoína/metabolismo , Aldo-Ceto Redutases , Meios de Cultivo Condicionados , Epiderme/patologia , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica , Humanos , Queloide/patologia , Queratinócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Elementos de Resposta , Transdução de Sinais , Ativação Transcricional , Regulação para Cima
20.
Nat Commun ; 7: 11394, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27099134

RESUMO

Notch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal. Epidermal Notch induces recruitment of immune cell subsets including RORγ(+) ILC3s into wounded dermis; RORγ(+) ILC3s are potent sources of IL17F in wounds and control immunological and epidermal cell responses. Mice deficient for RORγ(+) ILC3s heal wounds poorly resulting from delayed epidermal proliferation and macrophage recruitment in a CCL3-dependent process. Notch1 upregulates TNFα and the ILC3 recruitment chemokines CCL20 and CXCL13. TNFα, as a Notch1 effector, directs ILC3 localization and rates of wound healing. Altogether these findings suggest that Notch is a key stress/injury signal in skin epithelium driving innate immune cell recruitment and normal skin tissue repair.


Assuntos
Epiderme/imunologia , Imunidade Inata , Subpopulações de Linfócitos/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Receptor Notch1/imunologia , Ferimentos Penetrantes/imunologia , Animais , Movimento Celular/imunologia , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Epiderme/lesões , Feminino , Regulação da Expressão Gênica , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptor Notch1/genética , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Cicatrização/genética , Cicatrização/imunologia , Ferimentos Penetrantes/genética , Ferimentos Penetrantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA