RESUMO
BACKGROUND: Lead protective gloves are widely used to attenuate scattered radiations during fluoroscopic-guided medical procedures, thereby reducing hand exposure to radiation. AIMS: To determine whether lead-containing gloves present a risk of metal leaching onto the operator's skin, particularly due to the presence of sweat. METHODS: Artificial sweat of varying acidity was introduced into two types of commercial gloves containing lead. The level of lead in the sweat was then assessed after different exposure times. Electron microscopy was used to observe the morphology of the glove layers. RESULTS: Lead was detected in artificial sweat during each contact test on two different types of gloves. The concentration of lead increased with the acidity of the sweat, and the contact time. Gloves with a protective lining transferred less lead into sweat, but it was still present at significant levels. (i.e. few milligrams of lead per glove after one hour contact). CONCLUSIONS: Fluoroscopy operators should be aware of the risk of leaching of lead ions when using lead gloves under intensive conditions, although the potential harmfulness of lead ions leached into the glove remains essentially unknown.
Assuntos
Luvas Protetoras , Suor , Humanos , ÍonsRESUMO
Rubber surgical gloves worn as a barrier to prevent contamination from body fluids offer relative protection against contamination through direct percutaneous injuries involving needles, scalpel blades or bone fragments. To determine the main experimental parameters influencing the volume of blood transmitted by a hollow-bore needle (worst case scenario) during an accidental puncture, we designed an automatic puncture apparatus. Herpes simplex type 1 virus (HSV1), a model for enveloped viruses, was used as a 'marker' in an in-vitro gelatine model. Of the experimental parameters studied, the most critical influences were found to be needle diameter and puncture depth, whereas puncture speed, puncture angle and glove-stretching feature appeared to be less influential. A single glove reduced the volume of blood transferred by 52% compared with no glove, but double gloving offered no additional protection against hollow-bore needle punctures. Using 'standardized' puncture conditions, the virus-inhibiting surgical glove G-VIR elicited an 81% reduction in the amount of HSV1 transmitted as compared with single or double latex glove systems.