Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Integr Bioinform ; 15(4)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30864351

RESUMO

Comorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including IL1A, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes.


Assuntos
Asma/genética , Biomarcadores/análise , Biologia Computacional/métodos , Redes Reguladoras de Genes , Hipertensão/genética , Asma/epidemiologia , Comorbidade , Mineração de Dados , Alemanha/epidemiologia , Humanos , Hipertensão/epidemiologia , Software
2.
BMC Med Genomics ; 11(Suppl 1): 15, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29504915

RESUMO

BACKGROUND: Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. RESULTS: Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in biological processes related to the functioning of central nervous system. CONCLUSIONS: The application of methods of reconstruction and analysis of gene networks is a productive tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance to the comorbid condition of asthma and hypertension was employed that resulted in prediction of 10 genes, playing the key role in the development of the comorbid condition. The results can be utilised to plan experiments for identification of novel candidate genes along with searching for novel pharmacological targets.


Assuntos
Asma/genética , Biomarcadores/análise , Doenças do Sistema Nervoso Central/etiologia , Biologia Computacional/métodos , Mineração de Dados/métodos , Redes Reguladoras de Genes , Hipertensão/genética , Asma/epidemiologia , Catalase/genética , Comorbidade , Perfilação da Expressão Gênica , Humanos , Hipertensão/epidemiologia , Interleucina-10/genética , Software , Receptor 4 Toll-Like/genética
3.
J Integr Bioinform ; 15(4)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530896

RESUMO

Comorbidity, a co-incidence of several disorders in an individual, is a common phenomenon. Their development is governed by multiple factors, including genetic variation. The current study was set up to look at associations between isolated and comorbid diseases of bronchial asthma and hypertension, on one hand, and single nucleotide polymorphisms associated with regulation of gene expression (eQTL), on the other hand. A total of 96 eQTL SNPs were genotyped in 587 Russian individuals. Bronchial asthma alone was found to be associated with rs1927914 (TLR4), rs1928298 (intergenic variant), and rs1980616 (SERPINA1); hypertension alone was found to be associated with rs11065987 (intergenic variant); rs2284033 (IL2RB), rs11191582 (NT5C2), and rs11669386 (CARD8); comorbidity between asthma and hypertension was found to be associated with rs1010461 (ANG/RNASE4), rs7038716, rs7026297 (LOC105376244), rs7025144 (intergenic variant), and rs2022318 (intergenic variant). The results suggest that genetic background of comorbidity of asthma and hypertension is different from genetic backgrounds of both diseases manifesting isolated.


Assuntos
Asma/patologia , Biologia Computacional/métodos , Hipertensão Essencial/patologia , Redes Reguladoras de Genes , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto , Idoso , Asma/epidemiologia , Asma/genética , Comorbidade , Hipertensão Essencial/epidemiologia , Hipertensão Essencial/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Federação Russa/epidemiologia
4.
J Integr Bioinform ; 14(1)2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28609293

RESUMO

MicroRNAs (miRNAs) are small RNA molecules which are known to take part in post-transcriptional regulation of gene expression. Here, VANESA, an existing platform for reconstructing, visualizing, and analysis of large biological networks, has been further expanded to include all experimentally validated human miRNAs available within miRBase, TarBase and miRTarBase. This is done by integrating a custom hybrid miRNA database to DAWIS-M.D., VANESA's main data source, enabling the visualization and analysis of miRNAs within large biological pathways such as those found within the Kyoto Encyclopedia of Genes and Genomes (KEGG). Interestingly, 99.15 % of human KEGG pathways either contain genes which are targeted by miRNAs or harbor them. This is mainly due to the high number of interaction partners that each miRNA could have (e.g.: hsa-miR-335-5p targets 2544 genes and 71 miRNAs target NUFIP2). We demonstrate the usability of our system by analyzing the measles virus KEGG pathway as a proof-of-principle model and further highlight the importance of integrating miRNAs (both experimentally validated and predicted) into biological networks for the elucidation of novel miRNA-mRNA interactions of biological importance.


Assuntos
Redes Reguladoras de Genes/genética , Genes , Genoma/genética , MicroRNAs/análise , MicroRNAs/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica/genética , Humanos , Japão , Proteínas Nucleares/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reprodutibilidade dos Testes
5.
Nucleic Acids Res ; 32(Database issue): D456-8, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681456

RESUMO

The Signal Transduction Classification Database (STCDB) is a database of information relative to the classification of signal transduction. It is based primarily on a proposed classification of signal transduction and it describes each type of characterized signal transduction for which a unique ST number has been provided. This document presents, in its first version, the classification of signal transduction in eukaryotic cells. Approved classifications are available for web browsing at http://www.techfak.uni-bielefeld.de/~ mchen/STCDB.


Assuntos
Bases de Dados Factuais , Transdução de Sinais/fisiologia , Animais , Biologia Computacional , Células Eucarióticas/metabolismo , Armazenamento e Recuperação da Informação , Internet , Software
6.
In Silico Biol ; 5(2): 111-28, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15972016

RESUMO

Metabolic pathway alignment represents one of the most powerful tools for comparative analysis of metabolism. It involves recognition of metabolites common to a set of functionally-related metabolic pathways, interpretation of biological evolution processes and determination of alternative metabolic pathways. Moreover, it is of assistance in function prediction and metabolism modeling. Although research on genomic sequence alignment is extensive, the problem of aligning metabolic pathways has received less attention. We are motivated to develop an algorithm of metabolic pathway alignment to reveal the similarities between metabolic pathways. A new definition of the metabolic pathway is introduced. The algorithm has been implemented into the PathAligner system; its web-based interface is available at http://bibiserv.techfak.uni-bielefeld.de/pathaligner/.


Assuntos
Algoritmos , Metabolismo/fisiologia , Modelos Biológicos , Biologia Computacional , Simulação por Computador , Sistemas de Gerenciamento de Base de Dados , Software , Interface Usuário-Computador
7.
In Silico Biol ; 3(1-2): 215-27, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12762857

RESUMO

The rate constant of an enzyme-catalysed reaction is one of the major target properties to understand protein function. Atomic-detail computer simulations can in principle be used to estimate rate constants from the energy profile along the reaction coordinate. For such simulations, molecular mechanics is combined with a quantum description of the reaction process. In molecular mechanics calculations, the electrostatic field is represented by the Coulomb potential of partial atomic charges which have been parametrised for small building blocks in vacuum and transferred to the macromolecule. In aqueous solution, however, the electrostatic interactions are affected by the solvent polarization. While this can be described by numerically solving the Poisson-Boltzmann equation, it is computationally expensive. A simple approximation to this is to optimally reproduce the electrostatic potential in solution by reparametrising the partial atomic charges in such a way that a simple Coulomb potential can still be used. Such a procedure would allow to perform fast calculations of reaction processes in proteins while accounting for the solvent screening effect. Here, this method is tested on myosin, a motor protein that is both an enzyme and exists in very different conformations.


Assuntos
Bases de Dados Factuais , Regulação da Expressão Gênica , Ciclo do Ácido Cítrico , Simulação por Computador , Modelos Biológicos , Modelos Genéticos , Modelos Estatísticos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA