Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Sci ; 133(14)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32576663

RESUMO

The mitochondrial inner membrane contains a unique phospholipid known as cardiolipin (CL), which stabilises the protein complexes embedded in the membrane and supports its overall structure. Recent evidence indicates that the mitochondrial ribosome may associate with the inner membrane to facilitate co-translational insertion of the hydrophobic oxidative phosphorylation (OXPHOS) proteins into the inner membrane. We generated three mutant knockout cell lines for the CL biosynthesis gene Crls1 to investigate the effects of CL loss on mitochondrial protein synthesis. Reduced CL levels caused altered mitochondrial morphology and transcriptome-wide changes that were accompanied by uncoordinated mitochondrial translation rates and impaired respiratory chain supercomplex formation. Aberrant protein synthesis was caused by impaired formation and distribution of mitochondrial ribosomes. Reduction or loss of CL resulted in divergent mitochondrial and endoplasmic reticulum stress responses. We show that CL is required to stabilise the interaction of the mitochondrial ribosome with the membrane via its association with OXA1 (also known as OXA1L) during active translation. This interaction facilitates insertion of newly synthesised mitochondrial proteins into the inner membrane and stabilises the respiratory supercomplexes.


Assuntos
Cardiolipinas , Ribossomos Mitocondriais , Cardiolipinas/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Faraday Discuss ; 232(0): 399-418, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34558564

RESUMO

The impact of maculatin 1.1 (Mac1) on the mechanical properties of supported lipid membranes derived from exponential growth phase (EGP) and stationary growth phase (SGP) E. coli lipid extracts was analysed by surface plasmon resonance and atomic force microscopy. Each membrane was analysed by quantitative nanomechanical mapping to derive measurements of the modulus, adhesion and deformation in addition to bilayer height. Image analysis revealed the presence of two domains in the EGP membrane differing in height by 0.4 nm. Three distinct domains were observed in the SGP membrane corresponding to 4.2, 4.7 and 5.4 nm in height. Using surface plasmon resonance, Mac1 was observed to bind strongly to both membranes and then disrupt the membranes as evidenced by a sharp drop in baseline. Atomic force microscopy (AFM) topographic analysis revealed the formation of domains of different height and confirmed that membrane destruction was much faster for the SGP derived bilayer. Moreover, Mac1 selectively disrupted the domain with the lowest thickness, which may correspond to a liquid ordered domain. Overall, the results provide insight into the role of lipid domains in the response of bacteria to antimicrobial peptides.


Assuntos
Escherichia coli , Peptídeos , Antibacterianos/farmacologia , Bicamadas Lipídicas , Lipídeos , Microscopia de Força Atômica
3.
FASEB J ; 33(10): 11021-11027, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284743

RESUMO

Antimicrobial peptides (AMPs) that target lipid membranes show promise as alternatives to conventional antibiotics. However, the molecular mechanisms of membrane perturbation, as most studies are performed in model systems and in-cell structural studies, have yet to be achieved. Solid-state NMR spectroscopy is a valuable technique to investigate peptide-membrane interactions and to determine the structure of peptides, but the short lifespan of bacteria, especially under magic angle spinning conditions, has not permitted in-cell structural studies. Here, we present the first dynamic nuclear polarization (DNP)-NMR in-cell studies of Escherichia coli bacteria incubated with the AMP maculatin 1.1 (Mac1) in combination with novel nitroxide spin-labeled peptides 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC)-[F3W]-Mac1 (MacW) and TOAC-TOAC-MacW. The in-cell 13C and 15N signal NMR enhancements, and 1H spin-lattice T1 relaxation times showed that TOAC-MacW and TOAC-TOAC-MacW performed better than the more hydrophilic biradical AMUPol used for DNP studies. Furthermore, the pores formed by the AMP increased the signal enhancements and decreased T1 values of specifically 13C- and 15N-labeled Mac1. This approach has a great potential for determining the first in situ structures of AMPs in bacteria.-Sani, M.-A., Zhu, S., Hofferek, V., Separovic, F. Nitroxide spin-labeled peptides for DNP-NMR in-cell studies.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Espectroscopia de Ressonância Magnética/métodos , Marcadores de Spin , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli , Óxidos de Nitrogênio/química
4.
J Lipid Res ; 60(8): 1365-1378, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164391

RESUMO

Triglycerides (TGs) are the main energy storage form that accommodates changing organismal energy demands. In Drosophila melanogaster, the TG lipase Brummer is centrally important for body fat mobilization. Its gene brummer (bmm) encodes the ortholog of mammalian adipose TG lipase, which becomes activated by α/ß-hydrolase domain-containing 5 (ABHD5/CGI-58), one member of the paralogous gene pair, α/ß-hydrolase domain-containing 4 (ABHD4) and ABHD5 In Drosophila, the pummelig (puml) gene encodes the single sequence-related protein to mammalian ABHD4/ABHD5 with unknown function. We generated puml deletion mutant flies, that were short-lived as a result of lipid metabolism changes, stored excess body fat at the expense of glycogen, and exhibited ectopic fat storage with altered TG FA profile in the fly kidneys, called Malpighian tubules. TG accumulation in puml mutants was not associated with increased food intake but with elevated lipogenesis; starvation-induced lipid mobilization remained functional. Despite its structural similarity to mammalian ABHD5, Puml did not stimulate TG lipase activity of Bmm in vitro. Rather, Puml acted as a phospholipase that localized on lipid droplets, mitochondria, and peroxisomes. Together, these results show that the ABHD4/5 family member Puml is a versatile phospholipase that regulates Drosophila body fat storage and energy metabolism.


Assuntos
Proteínas de Drosophila/metabolismo , Metabolismo Energético , Lipase/metabolismo , Lipogênese , Lisofosfolipase/metabolismo , Túbulos de Malpighi/enzimologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Deleção de Genes , Lipase/genética , Lisofosfolipase/genética
5.
BMC Plant Biol ; 14: 199, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25928247

RESUMO

BACKGROUND: Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions. RESULTS: We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti. CONCLUSION: The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from the overexpression analysis, points to an important function of miR171h to integrate the nutrient homeostasis in order to safeguard the expression domain of NSP2 during both, arbuscular mycorrhizal and root nodule symbiosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , MicroRNAs/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Fosfatos , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Nódulos Radiculares de Plantas/microbiologia , Simbiose
6.
Artigo em Inglês | MEDLINE | ID: mdl-37301365

RESUMO

Methylthio-DADMe-immucillin-A (MTDIA) is an 86 picomolar inhibitor of 5'-methylthioadenosine phosphorylase (MTAP) with potent and specific anti-cancer efficacy. MTAP salvages S-adenosylmethionine (SAM) from 5'-methylthioadenosine (MTA), a toxic metabolite produced during polyamine biosynthesis. Changes in MTAP expression are implicated in cancer growth and development, making MTAP an appealing target for anti-cancer therapeutics. Since SAM is involved in lipid metabolism, we hypothesised that MTDIA alters the lipidomes of MTDIA-treated cells. To identify these effects, we analysed the lipid profiles of MTDIA-treated Saccharomyces cerevisiae using ultra-high resolution accurate mass spectrometry (UHRAMS). MTAP inhibition by MTDIA, and knockout of the Meu1 gene that encodes for MTAP in yeast, caused global lipidomic changes and differential abundance of lipids involved in cell signaling. The phosphoinositide kinase/phosphatase signaling network was specifically impaired upon MTDIA treatment, and was independently validated and further characterised via altered localization of proteins integral to this network. Functional consequences of dysregulated lipid metabolism included a decrease in reactive oxygen species (ROS) levels induced by MTDIA that was contemporaneous with changes in immunological response factors (nitric oxide, tumour necrosis factor-alpha and interleukin-10) in mammalian cells. These results indicate that lipid homeostasis alterations and concomitant downstream effects may be associated with MTDIA mechanistic efficacy.


Assuntos
Fosfatidilinositóis , Purina-Núcleosídeo Fosforilase , Animais , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , S-Adenosilmetionina/metabolismo , Oxirredução , Mamíferos/metabolismo
7.
J Struct Biol X ; 6: 100074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147732

RESUMO

Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on E. coli cells. The enhanced 15N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on E. coli cells. DNP-enhanced 15N-observed 31P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main E. coli lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using E. coli PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides in situ will provide greater insight into their mode of action.

8.
Metabolites ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35208246

RESUMO

As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a 'multi-omics' strategy for comprehensive quantitative analysis of the temporal changes in the lipidome and proteome profiles that occur under exponential growth phase versus stationary growth phase conditions i.e., nutrient depletion stress. Lipidome analysis performed using 'shotgun' direct infusion-based ultra-high resolution accurate mass spectrometry revealed a quantitative decrease in total lipid content under stationary growth phase conditions, along with a significant increase in the mol% composition of total cardiolipin, and an increase in 'odd-numbered' acyl-chain length containing glycerophospholipids. The inclusion of field asymmetry ion mobility spectrometry was shown to enable the enrichment and improved depth of coverage of low-abundance cardiolipins, while ultraviolet photodissociation-tandem mass spectrometry facilitated more complete lipid structural characterisation compared with conventional collision-induced dissociation, including unambiguous assignment of the odd-numbered acyl-chains as containing cyclopropyl modifications. Proteome analysis using data-dependent acquisition nano-liquid chromatography mass spectrometry and tandem mass spectrometry analysis identified 83% of the predicted E. coli lipid metabolism enzymes, which enabled the temporal dependence associated with the expression of key enzymes responsible for the observed adaptive lipid metabolism to be determined, including those involved in phospholipid metabolism (e.g., ClsB and Cfa), fatty acid synthesis (e.g., FabH) and degradation (e.g., FadA/B,D,E,I,J and M), and proteins involved in the oxidative stress response resulting from the generation of reactive oxygen species during ß-oxidation or lipid degradation.

9.
Methods Mol Biol ; 2306: 61-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954940

RESUMO

Chemical derivatization coupled with nano-electrospray ionization (nESI) and ultra-high resolution accurate mass spectrometry (UHRAMS) is an established approach to overcome isobaric and isomeric mass interference limitations, and improve the analytical performance, of direct-infusion (i.e., "shotgun") lipidome analysis strategies for "sum composition" level identification and quantification of individual lipid species from within complex mixtures. Here, we describe a protocol for sequential functional group selective derivatization of aminophospholipids and O-alk-1'-enyl (i.e., plasmalogen) lipids, that when integrated into a shotgun lipidomics workflow involving deuterium-labeled internal lipid standard addition, monophasic lipid extraction, and nESI-UHRAMS analysis, enables the routine identification and quantification of >500 individual lipid species at the "sum composition" level, across four lipid categories and from >30 lipid classes and subclasses.


Assuntos
Lipidômica/métodos , Fosfolipídeos/química , Animais , Deutério/química , Humanos , Isomerismo , Nanotecnologia , Fosfolipídeos/análise , Plasmalogênios/análise , Plasmalogênios/química , Espectrometria de Massas por Ionização por Electrospray , Fluxo de Trabalho
10.
Curr Opin Chem Biol ; 52: 85-92, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31260926

RESUMO

This review provides an analysis of the role that membrane composition and structure plays in the resistance of microorganisms to antimicrobial peptides (AMPs). We describe the current models of membrane disruption caused by AMPs and the changes in the structural properties that microbial membranes undergo in response to AMPs. This is followed by an outline of how the phospholipid composition of microbial membranes contributes to the changes in membrane bilayer structure and how the composition can be analysed in significant detail by modern lipidomic techniques. Finally, we discuss the challenges to fully analyse microbial membrane composition and structure that may occur during the development of resistance to AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/metabolismo , Farmacorresistência Bacteriana , Lipidômica , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Ligação Proteica
11.
iScience ; 12: 232-246, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30711747

RESUMO

Impaired therapeutic responses to anti-inflammatory glucocorticoids (GC) in chronic respiratory diseases are partly attributable to interleukins and transforming growth factor ß1 (TGF-ß1). However, previous efforts to prevent induction of GC insensitivity by targeting established canonical and non-canonical TGF-ß1 pathways have been unsuccessful. Here we elucidate a TGF-ß1 signaling pathway modulating GC activity that involves LIM domain kinase 2-mediated phosphorylation of cofilin1. Severe, steroid-resistant asthmatic airway epithelium showed increased levels of immunoreactive phospho-cofilin1. Phospho-cofilin1 was implicated in the activation of phospholipase D (PLD) to generate the effector(s) (lyso)phosphatidic acid, which mimics the TGF-ß1-induced GC insensitivity. TGF-ß1 induction of the nuclear hormone receptor corepressor, SMRT (NCOR2), was dependent on cofilin1 and PLD activities. Depletion of SMRT prevented GC insensitivity. This pathway for GC insensitivity offers several promising drug targets that potentially enable a safer approach to the modulation of TGF-ß1 in chronic inflammatory diseases than is afforded by global TGF-ß1 inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA