Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(3): 782-792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145985

RESUMO

Enhancers play an essential role in the etiology of schizophrenia; however, the dysregulation of enhancer activity and its impact on the regulome in schizophrenia remains understudied. To address this gap in our knowledge, we assessed enhancer and gene expression in 1,382 brain samples comprising cases with schizophrenia and unaffected controls. Dysregulation of enhancer expression was concordant with changes in gene expression, and was more closely associated with schizophrenia polygenic risk, suggesting that enhancer dysregulation is proximal to the genetic etiology of the disease. Modeling the shared variance of cis-coordinated genes and enhancers revealed a gene regulatory program that was highly associated with genetic vulnerability to schizophrenia. By integrating coordinated factors with evolutionary constraints, we found that enhancers acquired during human evolution are more likely to regulate genes that are implicated in neuropsychiatric disorders and, thus, hold potential as therapeutic targets. Our analysis provides a systematic view of regulome dysregulation in schizophrenia and highlights its convergence with schizophrenia polygenic risk and human-gained enhancers.


Assuntos
Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Herança Multifatorial , Esquizofrenia , Humanos , Esquizofrenia/genética , Herança Multifatorial/genética , Predisposição Genética para Doença/genética , Elementos Facilitadores Genéticos/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único/genética , Adulto
2.
Bioinformatics ; 37(2): 192-201, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32730587

RESUMO

SUMMARY: Large-scale transcriptome studies with multiple samples per individual are widely used to study disease biology. Yet, current methods for differential expression are inadequate for cross-individual testing for these repeated measures designs. Most problematic, we observe across multiple datasets that current methods can give reproducible false-positive findings that are driven by genetic regulation of gene expression, yet are unrelated to the trait of interest. Here, we introduce a statistical software package, dream, that increases power, controls the false positive rate, enables multiple types of hypothesis tests, and integrates with standard workflows. In 12 analyses in 6 independent datasets, dream yields biological insight not found with existing software while addressing the issue of reproducible false-positive findings. AVAILABILITY AND IMPLEMENTATION: Dream is available within the variancePartition Bioconductor package at http://bioconductor.org/packages/variancePartition. CONTACT: gabriel.hoffman@mssm.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , Software , Regulação da Expressão Gênica , Transcriptoma
3.
Am J Hum Genet ; 102(6): 1169-1184, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805045

RESUMO

Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up.


Assuntos
Estudo de Associação Genômica Ampla , Córtex Pré-Frontal/patologia , Locos de Características Quantitativas/genética , Esquizofrenia/genética , Células Cultivadas , Epigênese Genética , Genoma Humano , Humanos
4.
Bioinformatics ; 36(9): 2856-2861, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003784

RESUMO

MOTIVATION: Identifying correlated epigenetic features and finding differences in correlation between individuals with disease compared to controls can give novel insight into disease biology. This framework has been successful in analysis of gene expression data, but application to epigenetic data has been limited by the computational cost, lack of scalable software and lack of robust statistical tests. RESULTS: Decorate, differential epigenetic correlation test, identifies correlated epigenetic features and finds clusters of features that are differentially correlated between two or more subsets of the data. The software scales to genome-wide datasets of epigenetic assays on hundreds of individuals. We apply decorate to four large-scale datasets of DNA methylation, ATAC-seq and histone modification ChIP-seq. AVAILABILITY AND IMPLEMENTATION: decorate R package is available from https://github.com/GabrielHoffman/decorate. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Software , Epigênese Genética , Epigenômica , Genoma , Humanos
5.
Nucleic Acids Res ; 47(20): 10597-10611, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31544924

RESUMO

Identifying functional variants underlying disease risk and adoption of personalized medicine are currently limited by the challenge of interpreting the functional consequences of genetic variants. Predicting the functional effects of disease-associated protein-coding variants is increasingly routine. Yet, the vast majority of risk variants are non-coding, and predicting the functional consequence and prioritizing variants for functional validation remains a major challenge. Here, we develop a deep learning model to accurately predict locus-specific signals from four epigenetic assays using only DNA sequence as input. Given the predicted epigenetic signal from DNA sequence for the reference and alternative alleles at a given locus, we generate a score of the predicted epigenetic consequences for 438 million variants observed in previous sequencing projects. These impact scores are assay-specific, are predictive of allele-specific transcription factor binding and are enriched for variants associated with gene expression and disease risk. Nucleotide-level functional consequence scores for non-coding variants can refine the mechanism of known functional variants, identify novel risk variants and prioritize downstream experiments.


Assuntos
Montagem e Desmontagem da Cromatina , Aprendizado Profundo , Estudo de Associação Genômica Ampla/métodos , Código das Histonas , Polimorfismo Genético , Análise de Sequência de DNA/métodos , Epigênese Genética , Humanos
6.
Mol Psychiatry ; 24(1): 49-66, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483625

RESUMO

The development of human-induced pluripotent stem cells (hiPSCs) has made possible patient-specific modeling across the spectrum of human disease. Here, we discuss recent advances in psychiatric genomics and post-mortem studies that provide critical insights concerning cell-type composition and sample size that should be considered when designing hiPSC-based studies of complex genetic disease. We review recent hiPSC-based models of SZ, in light of our new understanding of critical power limitations in the design of hiPSC-based studies of complex genetic disorders. Three possible solutions are a movement towards genetically stratified cohorts of rare variant patients, application of CRISPR technologies to engineer isogenic neural cells to study the impact of common variants, and integration of advanced genetics and hiPSC-based datasets in future studies. Overall, we emphasize that to advance the reproducibility and relevance of hiPSC-based studies, stem cell biologists must contemplate statistical and biological considerations that are already well accepted in the field of genetics. We conclude with a discussion of the hypothesis of biological convergence of disease-through molecular, cellular, circuit, and patient level phenotypes-and how this might emerge through hiPSC-based studies.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Diferenciação Celular , Humanos , Modelos Biológicos , Neurônios , Fenótipo , Reprodutibilidade dos Testes
7.
Genes Immun ; 20(7): 577-588, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30692607

RESUMO

Genome-wide association studies have identified ~170 loci associated with Crohn's disease (CD) and defining which genes drive these association signals is a major challenge. The primary aim of this study was to define which CD locus genes are most likely to be disease related. We developed a gene prioritization regression model (GPRM) by integrating complementary mRNA expression datasets, including bulk RNA-Seq from the terminal ileum of 302 newly diagnosed, untreated CD patients and controls, and in stimulated monocytes. Transcriptome-wide association and co-expression network analyses were performed on the ileal RNA-Seq datasets, identifying 40 genome-wide significant genes. Co-expression network analysis identified a single gene module, which was substantially enriched for CD locus genes and most highly expressed in monocytes. By including expression-based and epigenetic information, we refined likely CD genes to 2.5 prioritized genes per locus from an average of 7.8 total genes. We validated our model structure using cross-validation and our prioritization results by protein-association network analyses, which demonstrated significantly higher CD gene interactions for prioritized compared with non-prioritized genes. Although individual datasets cannot convey all of the information relevant to a disease, combining data from multiple relevant expression-based datasets improves prediction of disease genes and helps to further understanding of disease pathogenesis.


Assuntos
Doença de Crohn/genética , Monócitos/patologia , Análise de Sequência de DNA/métodos , Adolescente , Algoritmos , Estudos de Casos e Controles , Criança , Pré-Escolar , Doença de Crohn/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Software , Transcriptoma/genética
9.
Hum Mol Genet ; 24(14): 4147-57, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25935003

RESUMO

Genome-wide association studies in Crohn's disease (CD) have identified 140 genome-wide significant loci. However, identification of genes driving association signals remains challenging. Furthermore, genome-wide significant thresholds limit false positives at the expense of decreased sensitivity. In this study, we explored gene features contributing to CD pathogenicity, including gene-based association data from CD and autoimmune (AI) diseases, as well as gene expression features (eQTLs, epigenetic markers of expression and intestinal gene expression data). We developed an integrative model based on a CD reference gene set. This integrative approach outperformed gene-based association signals alone in identifying CD-related genes based on statistical validation, gene ontology enrichment, differential expression between M1 and M2 macrophages and a validation using genes causing monogenic forms of inflammatory bowel disease as a reference. Besides gene-level CD association P-values, association with AI diseases was the strongest predictor, highlighting generalized mechanisms of inflammation, and the interferon-γ pathway particularly. Within the 140 high-confidence CD regions, 598 of 1328 genes had low prioritization scores, highlighting genes unlikely to contribute to CD pathogenesis. For select regions, comparably high integrative model scores were observed for multiple genes. This is particularly evident for regions having extensive linkage disequilibrium such as the IBD5 locus. Our analyses provide a standardized reference for prioritizing potential CD-related genes, in regions with both highly significant and nominally significant gene-level association P-values. Our integrative model may be particularly valuable in prioritizing rare, potentially private, missense variants for which genome-wide evidence for association may be unattainable.


Assuntos
Doença de Crohn/genética , Expressão Gênica , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/metabolismo , Intestinos , Desequilíbrio de Ligação , Modelos Logísticos , Macrófagos , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de RNA
10.
Gastroenterology ; 150(5): 1196-1207, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26836588

RESUMO

BACKGROUND & AIMS: Severe forms of inflammatory bowel disease (IBD) that develop in very young children can be caused by variants in a single gene. We performed whole-exome sequence (WES) analysis to identify genetic factors that might cause granulomatous colitis and severe perianal disease, with recurrent bacterial and viral infections, in an infant of consanguineous parents. METHODS: We performed targeted WES analysis of DNA collected from the patient and her parents. We validated our findings by a similar analysis of DNA from 150 patients with very-early-onset IBD not associated with known genetic factors analyzed in Toronto, Oxford, and Munich. We compared gene expression signatures in inflamed vs noninflamed intestinal and rectal tissues collected from patients with treatment-resistant Crohn's disease who participated in a trial of ustekinumab. We performed functional studies of identified variants in primary cells from patients and cell culture. RESULTS: We identified a homozygous variant in the tripartite motif containing 22 gene (TRIM22) of the patient, as well as in 2 patients with a disease similar phenotype. Functional studies showed that the variant disrupted the ability of TRIM22 to regulate nucleotide binding oligomerization domain containing 2 (NOD2)-dependent activation of interferon-beta signaling and nuclear factor-κB. Computational studies demonstrated a correlation between the TRIM22-NOD2 network and signaling pathways and genetic factors associated very early onset and adult-onset IBD. TRIM22 is also associated with antiviral and mycobacterial effectors and markers of inflammation, such as fecal calprotectin, C-reactive protein, and Crohn's disease activity index scores. CONCLUSIONS: In WES and targeted exome sequence analyses of an infant with severe IBD characterized by granulomatous colitis and severe perianal disease, we identified a homozygous variant of TRIM22 that affects the ability of its product to regulate NOD2. Combined computational and functional studies showed that the TRIM22-NOD2 network regulates antiviral and antibacterial signaling pathways that contribute to inflammation. Further study of this network could lead to new disease markers and therapeutic targets for patients with very early and adult-onset IBD.


Assuntos
Doença de Crohn/genética , Variação Genética , Antígenos de Histocompatibilidade Menor/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Idade de Início , Austrália , Células Cultivadas , Biologia Computacional , Consanguinidade , Doença de Crohn/diagnóstico , Doença de Crohn/metabolismo , Doença de Crohn/terapia , Bases de Dados Genéticas , Inglaterra , Exoma , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Alemanha , Homozigoto , Humanos , Recém-Nascido , Antígenos de Histocompatibilidade Menor/metabolismo , Ontário , Linhagem , Fenótipo , Mapas de Interação de Proteínas , Proteínas Repressoras/metabolismo , Índice de Gravidade de Doença , Transfecção , Proteínas com Motivo Tripartido/metabolismo
11.
Bioinformatics ; 32(12): i101-i110, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307606

RESUMO

MOTIVATION: Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to utilize data from EMR databases that contain patient data from diverse demographics and ancestries. The implications of this racial underrepresentation of data can be profound regarding effects on the healthcare delivery and actionability. To the best of our knowledge, our work is the first attempt to perform comparative, population-scale analyses of disease networks across three different populations, namely Caucasian (EA), African American (AA) and Hispanic/Latino (HL). RESULTS: We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we revealed appreciable differences in disease susceptibility, temporal patterns, network structure and underlying disease connections between EA, AA and HL populations. We found 2158 significantly comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease pair associations unique to each population as well as categorical enrichments of these pairs. Finally, we identified 51 key 'hub' diseases that are the focal points in the race-centric networks and of particular clinical importance. Incorporating race-specific disease comorbidity patterns will produce a more accurate and complete picture of the disease landscape overall and could support more precise understanding of disease relationships and patient management towards improved clinical outcomes. CONTACTS: rong.chen@mssm.edu or joel.dudley@mssm.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Registros Eletrônicos de Saúde , Negro ou Afro-Americano , Bases de Dados Factuais , Hispânico ou Latino , Humanos , População Branca
12.
BMC Bioinformatics ; 17(1): 483, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884101

RESUMO

BACKGROUND: As large-scale studies of gene expression with multiple sources of biological and technical variation become widely adopted, characterizing these drivers of variation becomes essential to understanding disease biology and regulatory genetics. RESULTS: We describe a statistical and visualization framework, variancePartition, to prioritize drivers of variation based on a genome-wide summary, and identify genes that deviate from the genome-wide trend. Using a linear mixed model, variancePartition quantifies variation in each expression trait attributable to differences in disease status, sex, cell or tissue type, ancestry, genetic background, experimental stimulus, or technical variables. Analysis of four large-scale transcriptome profiling datasets illustrates that variancePartition recovers striking patterns of biological and technical variation that are reproducible across multiple datasets. CONCLUSIONS: Our open source software, variancePartition, enables rapid interpretation of complex gene expression studies as well as other high-throughput genomics assays. variancePartition is available from Bioconductor: http://bioconductor.org/packages/variancePartition .


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica , Variação Genética/genética , Análise de Sequência de RNA/métodos , Software , Algoritmos , Regulação da Expressão Gênica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Lineares
13.
BMC Genomics ; 16: 241, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25880738

RESUMO

BACKGROUND: The X chromosome plays an important role in human diseases and traits. However, few X-linked associations have been reported in genome-wide association studies, partly due to analytical complications and low statistical power. RESULTS: In this study, we propose tests of X-linked association that capitalize on variance heterogeneity caused by various factors, predominantly the process of X-inactivation. In the presence of X-inactivation, the expression of one copy of the chromosome is randomly silenced. Due to the consequent elevated randomness of expressed variants, females that are heterozygotes for a quantitative trait locus might exhibit higher phenotypic variance for that trait. We propose three tests that build on this phenomenon: 1) A test for inflated variance in heterozygous females; 2) A weighted association test; and 3) A combined test. Test 1 captures the novel signal proposed herein by directly testing for higher phenotypic variance of heterozygous than homozygous females. As a test of variance it is generally less powerful than standard tests of association that consider means, which is supported by extensive simulations. Test 2 is similar to a standard association test in considering the phenotypic mean, but differs by accounting for (rather than testing) the variance heterogeneity. As expected in light of X-inactivation, this test is slightly more powerful than a standard association test. Finally, test 3 further improves power by combining the results of the first two tests. We applied the these tests to the ARIC cohort data and identified a novel X-linked association near gene AFF2 with blood pressure, which was not significant based on standard association testing of mean blood pressure. CONCLUSIONS: Variance-based tests examine overdispersion, thereby providing a complementary type of signal to a standard association test. Our results point to the potential to improve power of detecting X-linked associations in the presence of variance heterogeneity.


Assuntos
Genes Ligados ao Cromossomo X , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Algoritmos , Alelos , Aterosclerose/etiologia , Aterosclerose/genética , Feminino , Heterozigoto , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Inativação do Cromossomo X
14.
Bioinformatics ; 30(21): 3134-5, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25035399

RESUMO

UNLABELLED: The linear mixed model is the state-of-the-art method to account for the confounding effects of kinship and population structure in genome-wide association studies (GWAS). Current implementations test the effect of one or more genetic markers while including prespecified covariates such as sex. Here we develop an efficient implementation of the linear mixed model that allows composite hypothesis tests to consider genotype interactions with variables such as other genotypes, environment, sex or ancestry. Our R package, lrgpr, allows interactive model fitting and examination of regression diagnostics to facilitate exploratory data analysis in the context of the linear mixed model. By leveraging parallel and out-of-core computing for datasets too large to fit in main memory, lrgpr is applicable to large GWAS datasets and next-generation sequencing data. AVAILABILITY AND IMPLEMENTATION: lrgpr is an R package available from lrgpr.r-forge.r-project.org.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Software , Genótipo , Modelos Lineares
15.
PLoS Genet ; 8(4): e1002641, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570615

RESUMO

African Pygmy groups show a distinctive pattern of phenotypic variation, including short stature, which is thought to reflect past adaptation to a tropical environment. Here, we analyze Illumina 1M SNP array data in three Western Pygmy populations from Cameroon and three neighboring Bantu-speaking agricultural populations with whom they have admixed. We infer genome-wide ancestry, scan for signals of positive selection, and perform targeted genetic association with measured height variation. We identify multiple regions throughout the genome that may have played a role in adaptive evolution, many of which contain loci with roles in growth hormone, insulin, and insulin-like growth factor signaling pathways, as well as immunity and neuroendocrine signaling involved in reproduction and metabolism. The most striking results are found on chromosome 3, which harbors a cluster of selection and association signals between approximately 45 and 60 Mb. This region also includes the positional candidate genes DOCK3, which is known to be associated with height variation in Europeans, and CISH, a negative regulator of cytokine signaling known to inhibit growth hormone-stimulated STAT5 signaling. Finally, pathway analysis for genes near the strongest signals of association with height indicates enrichment for loci involved in insulin and insulin-like growth factor signaling.


Assuntos
Evolução Biológica , Estatura/genética , Nanismo , Etnicidade/genética , Adaptação Biológica , África Ocidental , População Negra , Mapeamento Cromossômico , Nanismo/genética , Estudos de Associação Genética , Genoma Humano , Hormônio do Crescimento/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Fator de Crescimento Insulin-Like I/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Proteínas Supressoras da Sinalização de Citocina/genética
16.
PLoS Comput Biol ; 9(6): e1003101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825936

RESUMO

Penalized Multiple Regression (PMR) can be used to discover novel disease associations in GWAS datasets. In practice, proposed PMR methods have not been able to identify well-supported associations in GWAS that are undetectable by standard association tests and thus these methods are not widely applied. Here, we present a combined algorithmic and heuristic framework for PUMA (Penalized Unified Multiple-locus Association) analysis that solves the problems of previously proposed methods including computational speed, poor performance on genome-scale simulated data, and identification of too many associations for real data to be biologically plausible. The framework includes a new minorize-maximization (MM) algorithm for generalized linear models (GLM) combined with heuristic model selection and testing methods for identification of robust associations. The PUMA framework implements the penalized maximum likelihood penalties previously proposed for GWAS analysis (i.e. Lasso, Adaptive Lasso, NEG, MCP), as well as a penalty that has not been previously applied to GWAS (i.e. LOG). Using simulations that closely mirror real GWAS data, we show that our framework has high performance and reliably increases power to detect weak associations, while existing PMR methods can perform worse than single marker testing in overall performance. To demonstrate the empirical value of PUMA, we analyzed GWAS data for type 1 diabetes, Crohns's disease, and rheumatoid arthritis, three autoimmune diseases from the original Wellcome Trust Case Control Consortium. Our analysis replicates known associations for these diseases and we discover novel etiologically relevant susceptibility loci that are invisible to standard single marker tests, including six novel associations implicating genes involved in pancreatic function, insulin pathways and immune-cell function in type 1 diabetes; three novel associations implicating genes in pro- and anti-inflammatory pathways in Crohn's disease; and one novel association implicating a gene involved in apoptosis pathways in rheumatoid arthritis. We provide software for applying our PUMA analysis framework.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Teóricos , Análise de Regressão , Humanos
17.
Res Sq ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38645177

RESUMO

Our understanding of the sex-specific role of the non-coding genome in serious mental illness remains largely incomplete. To address this gap, we explored sex differences in 1,393 chromatin accessibility profiles, derived from neuronal and non-neuronal nuclei of two distinct cortical regions from 234 cases with serious mental illness and 235 controls. We identified sex-specific enhancer-promoter interactions and showed that they regulate genes involved in X-chromosome inactivation (XCI). Examining chromosomal conformation allowed us to identify sex-specific cis- and trans-regulatory domains (CRDs and TRDs). Co-localization of sex-specific TRDs with schizophrenia common risk variants pinpointed male-specific regulatory regions controlling a number of metabolic pathways. Additionally, enhancers from female-specific TRDs were found to regulate two genes known to escape XCI, (XIST and JPX), underlying the importance of TRDs in deciphering sex differences in schizophrenia. Overall, these findings provide extensive characterization of sex differences in the brain epigenome and disease-associated regulomes.

18.
Biol Psychiatry ; 95(2): 187-198, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454787

RESUMO

BACKGROUND: Converging evidence from large-scale genetic and postmortem studies highlights the role of aberrant neurotransmission and genetic regulation in brain-related disorders. However, identifying neuronal activity-regulated transcriptional programs in the human brain and understanding how changes contribute to disease remain challenging. METHODS: To better understand how the activity-dependent regulome contributes to risk for brain-related disorders, we profiled the transcriptomic and epigenomic changes following neuronal depolarization in human induced pluripotent stem cell-derived glutamatergic neurons (NGN2) from 6 patients with schizophrenia and 5 control participants. RESULTS: Multiomic data integration associated global patterns of chromatin accessibility with gene expression and identified enhancer-promoter interactions in glutamatergic neurons. Within 1 hour of potassium chloride-induced depolarization, independent of diagnosis, glutamatergic neurons displayed substantial activity-dependent changes in the expression of genes regulating synaptic function. Depolarization-induced changes in the regulome revealed significant heritability enrichment for schizophrenia and Parkinson's disease, adding to mounting evidence that sequence variation within activation-dependent regulatory elements contributes to the genetic risk for brain-related disorders. Gene coexpression network analysis elucidated interactions among activity-dependent and disease-associated genes and pointed to a key driver (NAV3) that interacted with multiple genes involved in axon guidance. CONCLUSIONS: Overall, we demonstrated that deciphering the activity-dependent regulome in glutamatergic neurons reveals novel targets for advanced diagnosis and therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Encéfalo
19.
Res Sq ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38343831

RESUMO

Microglia are resident immune cells of the brain and are implicated in the etiology of Alzheimer's Disease (AD) and other diseases. Yet the cellular and molecular processes regulating their function throughout the course of the disease are poorly understood. Here, we present the transcriptional landscape of primary microglia from 189 human postmortem brains, including 58 healthy aging individuals and 131 with a range of disease phenotypes, including 63 patients representing the full spectrum of clinical and pathological severity of AD. We identified transcriptional changes associated with multiple AD phenotypes, capturing the severity of dementia and neuropathological lesions. Transcript-level analyses identified additional genes with heterogeneous isoform usage and AD phenotypes. We identified changes in gene-gene coordination in AD, dysregulation of co-expression modules, and disease subtypes with distinct gene expression. Taken together, these data further our understanding of the key role of microglia in AD biology and nominate candidates for therapeutic intervention.

20.
Science ; 384(6698): eadg5136, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781388

RESUMO

The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.


Assuntos
Predisposição Genética para Doença , Neuroglia , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Estudos de Coortes , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Fatores de Risco , Esquizofrenia/genética , Sinapses/metabolismo , Transcriptoma , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Neuroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA