RESUMO
Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.
Assuntos
Glucagon/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Tri-Iodotironina/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Engenharia Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Glucagon/efeitos adversos , Glucagon/química , Glucagon/farmacologia , Hiperglicemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Tri-Iodotironina/efeitos adversos , Tri-Iodotironina/química , Tri-Iodotironina/farmacologiaRESUMO
AIMS/HYPOTHESIS: Although insulin resistance often leads to type 2 diabetes mellitus, its early stages are often unrecognised, thus reducing the probability of successful prevention and intervention. Moreover, treatment efficacy is affected by the genetics of the individual. We used gene expression profiles from a cross-sectional study to identify potential candidate genes for the prediction of diabetes risk and intervention response. METHODS: Using a multivariate regression model, we linked gene expression profiles of human skeletal muscle and intermuscular adipose tissue (IMAT) to fasting glucose levels and glucose infusion rate. Based on the expression patterns of the top predictive genes, we characterised and compared individual gene expression with clinical classifications using k-nearest neighbour clustering. The predictive potential of the candidate genes identified was validated using muscle gene expression data from a longitudinal intervention study. RESULTS: We found that genes with a strong association with clinical measures clustered into three distinct expression patterns. Their predictive values for insulin resistance varied substantially between skeletal muscle and IMAT. Moreover, we discovered that individual gene expression-based classifications may differ from classifications based predominantly on clinical variables, indicating that participant stratification may be imprecise if only clinical variables are used for classification. Of the 15 top candidate genes, ST3GAL2, AASS, ARF1 and the transcription factor SIN3A are novel candidates for predicting a refined diabetes risk and intervention response. CONCLUSION/INTERPRETATION: Our results confirm that disease progression and successful intervention depend on individual gene expression states. We anticipate that our findings may lead to a better understanding and prediction of individual diabetes risk and may help to develop individualised intervention strategies.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Prognóstico , Estudos Transversais , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Glucose/metabolismo , Biomarcadores/metabolismo , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Agonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not been explored yet. METHODS: After 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily subcutaneous injections of long-acting acylated GIP analog (acyl-GIP; 10nmol/kg body weight) for 28 days. Body weight, food intake, whole-body composition were monitored throughout the study. Fasting blood glucose and intraperitoneal glucose tolerance test (ipGTT) were determined on day 21 of the study. Circulating lipid levels, lipoprotein profiles and atherosclerotic lesion size was assessed at the end of the study. Acyl-GIP effects on fat depots were determined by histology and transcriptomics. RESULTS: Herein we found that treatment with acyl-GIP reduced dyslipidemia and atherogenesis in male LDLR-/- mice. Acyl-GIP administration resulted in smaller adipocytes within the inguinal fat depot and RNAseq analysis of the latter revealed that acyl-GIP may improve dyslipidemia by directly modulating lipid metabolism in this fat depot. CONCLUSIONS: This study identified an unanticipated efficacy of chronic GIPR agonism to improve dyslipidemia and cardiovascular disease independently of body weight loss, indicating that treatment with acyl-GIP may be a novel approach to alleviate cardiometabolic disease.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dislipidemias , Masculino , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Dislipidemias/tratamento farmacológico , Peso Corporal , Redução de PesoRESUMO
AIMS: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) (GLP-1/GIP co-agonist) have been shown to outperform each single peptide in the treatment of obesity and cardiometabolic disease in preclinical and clinical trials. By combining physiological treatment endpoints with plasma proteomic profiling (PPP), we aimed to identify biomarkers to advance non-invasive metabolic monitoring of compound treatment success and exploration of ulterior treatment effects on an individual basis. MATERIALS AND METHODS: We performed metabolic phenotyping along with PPP in body weight-matched male and female diet-induced obese (DIO) mice treated for 21 days with phosphate-buffered saline, single GIP and GLP-1 mono-agonists, or a GLP-1/GIP co-agonist. RESULTS: GLP-1R/GIPR co-agonism improved obesity, glucose intolerance, non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia with superior efficacy in both male and female mice compared with mono-agonist treatments. PPP revealed broader changes of plasma proteins after GLP-1/GIP co-agonist compared with mono-agonist treatments in both sexes, including established and potential novel biomarkers for systemic inflammation, NAFLD and atherosclerosis. Subtle sex-specific differences have been observed in metabolic phenotyping and PPP. CONCLUSIONS: We herein show that a recently developed unimolecular GLP-1/GIP co-agonist is more efficient in improving metabolic disease than either mono-agonist in both sexes. PPP led to the identification of a sex-independent protein panel with the potential to monitor non-invasively the treatment efficacies on metabolic function of this clinically advancing GLP-1/GIP co-agonist.
Assuntos
Incretinas , Proteoma , Animais , Dieta , Feminino , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Masculino , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Proteômica , Resultado do TratamentoRESUMO
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the population and can progress to cirrhosis with limited treatment options. As the liver secretes most of the blood plasma proteins, liver disease may affect the plasma proteome. Plasma proteome profiling of 48 patients with and without cirrhosis or NAFLD revealed six statistically significantly changing proteins (ALDOB, APOM, LGALS3BP, PIGR, VTN, and AFM), two of which are already linked to liver disease. Polymeric immunoglobulin receptor (PIGR) was significantly elevated in both cohorts by 170% in NAFLD and 298% in cirrhosis and was further validated in mouse models. Furthermore, a global correlation map of clinical and proteomic data strongly associated DPP4, ANPEP, TGFBI, PIGR, and APOE with NAFLD and cirrhosis. The prominent diabetic drug target DPP4 is an aminopeptidase like ANPEP, ENPEP, and LAP3, all of which are up-regulated in the human or mouse data. Furthermore, ANPEP and TGFBI have potential roles in extracellular matrix remodeling in fibrosis. Thus, plasma proteome profiling can identify potential biomarkers and drug targets in liver disease.
Assuntos
Biomarcadores/sangue , Cirrose Hepática/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Proteoma , Proteômica , Animais , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
Intermuscular adipose tissue (IMAT) is negatively related to insulin sensitivity, but a causal role of IMAT in the development of insulin resistance is unknown. IMAT was sampled in humans to test for the ability to induce insulin resistance in vitro and characterize gene expression to uncover how IMAT may promote skeletal muscle insulin resistance. Human primary muscle cells were incubated with conditioned media from IMAT, visceral (VAT), or subcutaneous adipose tissue (SAT) to evaluate changes in insulin sensitivity. RNAseq analysis was performed on IMAT with gene expression compared with skeletal muscle and SAT, and relationships to insulin sensitivity were determined in men and women spanning a wide range of insulin sensitivity measured by hyperinsulinemic-euglycemic clamp. Conditioned media from IMAT and VAT decreased insulin sensitivity similarly compared with SAT. Multidimensional scaling analysis revealed distinct gene expression patterns in IMAT compared with SAT and muscle. Pathway analysis revealed that IMAT expression of genes in insulin signaling, oxidative phosphorylation, and peroxisomal metabolism related positively to donor insulin sensitivity, whereas expression of macrophage markers, inflammatory cytokines, and secreted extracellular matrix proteins were negatively related to insulin sensitivity. Perilipin 5 gene expression suggested greater IMAT lipolysis in insulin-resistant individuals. Combined, these data show that factors secreted from IMAT modulate muscle insulin sensitivity, possibly via secretion of inflammatory cytokines and extracellular matrix proteins, and by increasing local FFA concentration in humans. These data suggest IMAT may be an important regulator of skeletal muscle insulin sensitivity and could be a novel therapeutic target for skeletal muscle insulin resistance.
Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Atletas , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Humanos , Gordura Intra-Abdominal/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Cultura Primária de Células , Comportamento Sedentário , Análise de Sequência de RNA , Gordura Subcutânea/metabolismoRESUMO
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
Assuntos
Metabolismo Energético , Glucagon/metabolismo , Animais , Humanos , TermogêneseRESUMO
Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity. We simulated that condition by using a genetic loss of function mouse model (apoA-I-/-) with markedly reduced HDL levels to investigate whether HDL may directly modulate hypothalamic inflammation. Astrogliosis was significantly enhanced in the hypothalami of apoA-I-/- compared with apoA-I+/+ mice and was associated with compromised mitochondrial function. apoA-I-/- mice exhibited key components of metabolic disease, like increased fat mass, fasting glucose levels, hepatic triglyceride content, and hepatic glucose output compared with apoA-I+/+ controls. Administration of reconstituted HDL (CSL-111) normalized hypothalamic inflammation and mitochondrial function markers in apoA-I-/- mice. Treatment of primary astrocytes with apoA-I resulted in enhanced mitochondrial activity, implying that circulating HDL levels are likely important for astrocyte function. HDL-based therapies may consequently avert reactive gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics and thereby offering potential treatment and prevention for obesity and metabolic disease.
Assuntos
Apolipoproteína A-I/metabolismo , Gliose/metabolismo , Gliose/patologia , Hipotálamo/patologia , Lipoproteínas HDL/sangue , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Gliose/sangue , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Fosforilação Oxidativa , FenótipoRESUMO
Mitochondrial dysfunction in white adipose tissue plays a key role in the pathogenesis of type 2 diabetes. Emerging evidence specifically suggests that altered oxidative phosphorylation in adipocytes may have a relevant effect on systemic glucose homeostasis, requiring understanding of adipocyte bioenergetics. We analyzed energetic flux of an intact human adipocyte cell model by plate-based respirometry and extracellular acidification. During differentiation, we discovered that glycolytic ATP production was increasingly replaced by mitochondrial oxidative metabolism (from 20 to 60%). This observation was corroborated by simultaneous up-regulation of canonical mitochondrial gene programs, such as peroxisome proliferator-activated receptor γ coactivator α (PGC1α; 150-fold) and cytochrome c-1 (CytC; 3-fold). Mimicking diabetic phenotypes by exposure to various glucose levels (0, 5, and 25 mM) resulted in immediate adjustments of glycolytic and mitochondrial activity that aimed to maintain intracellular ATP. We conclude that ATP deficits by mitochondrial failure are compensated by glycolytic ATP production, resulting in inefficient conversion of glucose to cellular ATP. Metabolic inefficiency may enhance glucose uptake, therefore improving systemic glucose homeostasis. Notably, mature adipocytes developed a high spare respiratory capacity (increased by 6-fold) permitting rapid adaptation to metabolic changes. Spare respiratory capacity may also allow additional metabolic scope for energy dissipation, potentially offering new therapeutic targets for the treatment of metabolic disease.
Assuntos
Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Células Cultivadas , Citocromos c1/metabolismo , Glucose/farmacologia , Glicólise , Humanos , Fosforilação Oxidativa , PPAR gama/metabolismoRESUMO
BACKGROUND: Abnormal glucose metabolism is a central feature of disorders with increased rates of cardiovascular disease. Low levels of high-density lipoprotein (HDL) are a key predictor for cardiovascular disease. We used genetic mouse models with increased HDL levels (apolipoprotein A-I transgenic [apoA-I tg]) and reduced HDL levels (apoA-I-deficient [apoA-I ko]) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. METHODS AND RESULTS: ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test compared with wild-type mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved glucose tolerance test, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of endurance capacity compared with wild-type mice. Circulating levels of fibroblast growth factor 21, a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high-fat diet-induced impairment of glucose homeostasis. CONCLUSIONS: In view of impaired mitochondrial function and decreased HDL levels in type 2 diabetes mellitus, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of type 2 diabetes mellitus beyond cardiovascular disease.
Assuntos
Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Hiperglicemia/metabolismo , Lipoproteínas HDL/metabolismo , Músculo Esquelético/metabolismo , Animais , Apolipoproteína A-I/genética , Respiração Celular/fisiologia , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Fatores de Crescimento de Fibroblastos/sangue , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Resistência Física/fisiologiaRESUMO
Microcirculatory dysfunction has been observed in the dermal white adipose tissue (dWAT) and subcutaneous white adipose tissue (scWAT) of obese humans and has been proposed as an early prediction marker for cardio-metabolic disease progression. In-vivo visualization and longitudinal monitoring of microvascular remodeling in these tissues remains challenging. We compare the performance of two optoacoustic imaging methods, i.e. multi-spectral optoacoustic tomography (MSOT) and raster-scanning optoacoustic mesoscopy (RSOM) in visualizing lipid and hemoglobin contrast in scWAT and dWAT in a mouse model of diet-induced obesity (DIO) undergoing voluntary wheel running intervention for 32 weeks. MSOT visualized lipid and hemoglobin contrast in murine fat depots in a quantitative manner even at early stages of DIO. We show for the first time to our knowledge that RSOM allows precise visualization of the dWAT microvasculature and provides quantitative readouts of skin layer thickness and vascular density in dWAT and dermis. Combination of MSOT and RSOM resolved exercise-induced morphological changes in microvasculature density, tissue oxygen saturation, lipid and blood volume content in dWAT and scWAT. The combination of MSOT and RSOM may allow precise monitoring of microcirculatory dysfunction and intervention response in dWAT and scWAT in a mouse model for DIO. Our findings have laid out the foundation for future clinical studies using optoacoustic-derived vascular readouts from adipose tissues as a biomarker for monitoring microcirculatory function in metabolic disease.
RESUMO
OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.
Assuntos
Peso Corporal , Ingestão de Alimentos , Polipeptídeo Inibidor Gástrico , Camundongos Knockout , Obesidade , Receptores dos Hormônios Gastrointestinais , Receptores para Leptina , Animais , Masculino , Camundongos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glucose/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Transdução de SinaisRESUMO
Muscle-residing regulatory T cells (Tregs) control local tissue integrity and function. However, the molecular interface connecting Treg-based regulation with muscle function and regeneration remains largely unexplored. Here, we show that exercise fosters a stable induction of highly functional muscle-residing Tregs with increased expression of amphiregulin (Areg), EGFR, and ST2. Mechanistically, we find that mice lacking IL6Rα on T cells (TKO) harbor significant reductions in muscle Treg functionality and satellite and fibro-adipogenic progenitor cells, which are required for muscle regeneration. Using exercise and sarcopenia models, IL6Rα TKO mice demonstrate deficits in Tregs, their functional maturation, and a more pronounced decline in muscle mass. Muscle injury models indicate that IL6Rα TKO mice have significant disabilities in muscle regeneration. Treg gain of function restores impaired muscle repair in IL6Rα TKO mice. Of note, pharmacological IL6R blockade in WT mice phenocopies deficits in muscle function identified in IL6Rα TKO mice, thereby highlighting the clinical implications of the findings.
Assuntos
Músculo Esquelético , Linfócitos T Reguladores , Camundongos , Animais , Linfócitos T Reguladores/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Adipogenia , Receptores de Interleucina-6/metabolismoRESUMO
The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.
Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G , Glucose , Neurônios GABAérgicos/metabolismo , Ingestão de AlimentosRESUMO
The low density lipoprotein receptor-related protein-1 (LRP1) is known to serve as a chylomicron remnant receptor in the liver responsible for the binding and plasma clearance of apolipoprotein E-containing lipoproteins. Previous in vitro studies have provided evidence to suggest that LRP1 expression may also influence high density lipoprotein (HDL) metabolism. The current study showed that liver-specific LRP1 knock-out (hLrp1(-/-)) mice displayed lower fasting plasma HDL cholesterol levels when compared with hLrp1(+/+) mice. Lecithin:cholesterol acyl transferase and hepatic lipase activities in plasma of hLrp1(-/-) mice were comparable with those observed in hLrp1(+/+) mice, indicating that hepatic LRP1 inactivation does not influence plasma HDL remodeling. Plasma clearance of HDL particles and HDL-associated cholesteryl esters was also similar between hLrp1(+/+) and hLrp1(-/-) mice. In contrast, HDL secretion from primary hepatocytes isolated from hLrp1(-/-) mice was significantly reduced when compared with that observed with hLrp1(+/+) hepatocytes. Biotinylation of cell surface proteins revealed decreased surface localization of the ATP-binding cassette, subfamily A, member 1 (ABCA1) protein, but total cellular ABCA1 level was not changed in hLrp1(-/-) hepatocytes. Finally, hLrp1(-/-) hepatocytes displayed reduced binding capacity for extracellular cathepsin D, resulting in lower intracellular cathepsin D content and impairment of prosaposin activation, a process that is required for membrane translocation of ABCA1 to facilitate cholesterol efflux and HDL secretion. Taken together, these results documented that hepatic LRP1 participates in cellular activation of lysosomal enzymes and through this mechanism, indirectly modulates the production and plasma levels of HDL.
Assuntos
Membrana Celular/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/sangue , Fígado/metabolismo , Lisossomos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Catepsina D/genética , Catepsina D/metabolismo , Membrana Celular/genética , Jejum/sangue , Lipase/genética , Lipase/metabolismo , Lipoproteínas HDL/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lisossomos/genética , Camundongos , Camundongos Knockout , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transporte Proteico/fisiologia , Receptores de LDL/genética , Saposinas/genética , Saposinas/metabolismo , Proteínas Supressoras de Tumor/genéticaRESUMO
BACKGROUND & AIMS: Postprandial hyperlipidemia is a risk factor for atherosclerotic heart disease and is associated with the consumption of high-fat diets and obesity. Bariatric surgeries result in superior and more durable weight loss than dieting. These surgeries are also associated with multiple metabolic improvements, including reduced plasma lipid levels. We investigated whether the beneficial effects of vertical sleeve gastrectomy (VSG) on plasma lipid levels are weight independent. METHODS: VSG was performed on Long-Evans rats with diet-induced obesity. Controls were sham-operated animals who were either pair-fed or ad libitum-fed. We measured fasting and postprandial levels of plasma lipid. To determine hepatic and intestinal triglyceride secretion, we injected the lipase inhibitor poloxamer 407 alone or before oral lipid gavage. (13)C-Triolein was used to estimate postprandial uptake of lipid in the intestine. RESULTS: Rats that received VSG and high-fat diets had markedly lower fasting levels of plasma triglyceride, cholesterol, and phospholipid than obese and lean (pair-fed) controls that were fed high-fat diets. Rats that received VSG had a marked, weight-independent reduction in secretion of intestinal triglycerides. VSG did not alter total intestinal triglyceride levels or size of the cholesterol storage pool nor did it affect the expression of genes in the intestine that control triglyceride metabolism and synthesis. VSG did not affect fasting secretion of triglyceride, liver weight, hepatic lipid storage, or transcription of genes that regulate hepatic lipid processing. CONCLUSIONS: VSG reduced postprandial levels of plasma lipid, independently of body weight. This resulted from reduced intestinal secretion of triglycerides following ingestion of a lipid meal and indicates that VSG has important effects on metabolism.
Assuntos
Gastrectomia/métodos , Mucosa Intestinal/metabolismo , Lipídeos/sangue , Obesidade/metabolismo , Obesidade/cirurgia , Período Pós-Prandial/fisiologia , Triglicerídeos/metabolismo , Animais , Peso Corporal/fisiologia , Gorduras na Dieta/efeitos adversos , Modelos Animais de Doenças , Hiperlipidemias/sangue , Hiperlipidemias/prevenção & controle , Metabolismo dos Lipídeos/fisiologia , Masculino , Obesidade/induzido quimicamente , Ratos , Ratos Long-Evans , Estômago/cirurgiaRESUMO
PURPOSE OF REVIEW: The increasing incidence of obesity and diabetes worldwide are critical risk factors for the development of cardiovascular disease. Although the role of the central nervous system (CNS) in the control of fat mass and glucose metabolism has been studied in detail, less is known about the contribution of neural-derived signals in the development of systemic dyslipidemia. In this review we summarize and analyze evidence suggesting a specific role of the CNS in the control of systemic cholesterol metabolism and circulating plasma lipids levels. RECENT FINDINGS: Although early reports based in lesions or electrical stimulation suggested a role for CNS-derived signals in the development of dyslipidemia, more recent findings have confirmed the involvement of specific neural pathways critical for the neuroendocrine control of cholesterol metabolism and plasma lipid levels. SUMMARY: The identification of the pathways targeted by the CNS to control plasma lipid levels could offer alternative targets to create efficient novel therapies for the treatment of several metabolic syndrome components including dyslipidemia.
Assuntos
Colesterol/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Neuropeptídeo Y/metabolismo , Sistemas Neurossecretores/fisiopatologiaRESUMO
Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARÉ/É£) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARÉ/É£ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARÉ£-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography-mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.
Assuntos
Diabetes Mellitus Tipo 2 , PPAR alfa , Alcanossulfonatos , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose , Masculino , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR alfa/agonistas , PPAR alfa/uso terapêutico , FenilpropionatosRESUMO
OBJECTIVE: Adiponectin is an adipocyte-derived, secreted protein that is implicated in protection against a cluster of related metabolic disorders. Mice lacking adiponectin display impaired hepatic insulin sensitivity and respond only partially to peroxisome proliferator-activated receptor gamma agonists. Adiponectin has been associated with antiinflammatory and antiatherogenic properties; however, the direct involvement of adiponectin on the atherogenic process has not been studied. METHODS AND RESULTS: We crossed adiponectin knockout mice (Adn(-/-)) or mice with chronically elevated adiponectin levels (Adn(Tg)) into the low-density lipoprotein receptor-null (Ldlr(-/-)) and the apoliprotein E-null (Apoe(-/-)) mouse models. Adiponectin levels did not correlate with a suppression of the atherogenic process. Plaque volume in the aortic root, cholesterol accumulation in the aorta, and plaque morphology under various dietary conditions were not affected by circulating adiponectin levels. In light of the strong associations reported for adiponectin with cardiovascular disease in humans, the lack of a phenotype in gain- and loss-of-function studies in mice suggests a lack of causation for adiponectin in inhibiting the buildup of atherosclerotic lesions. CONCLUSIONS: These data indicate that the actions of adiponectin on the cardiovascular system are complex and multifaceted, with a minimal direct impact on atherosclerotic plaque formation in preclinical rodent models.