Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 77(1): 39-50.e10, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735642

RESUMO

CRISPR-Cas systems encode RNA-guided surveillance complexes to find and cleave invading DNA elements. While it is thought that invaders are neutralized minutes after cell entry, the mechanism and kinetics of target search and its impact on CRISPR protection levels have remained unknown. Here, we visualize individual Cascade complexes in a native type I CRISPR-Cas system. We uncover an exponential relation between Cascade copy number and CRISPR interference levels, pointing to a time-driven arms race between invader replication and target search, in which 20 Cascade complexes provide 50% protection. Driven by PAM-interacting subunit Cas8e, Cascade spends half its search time rapidly probing DNA (∼30 ms) in the nucleoid. We further demonstrate that target DNA transcription and CRISPR arrays affect the integrity of Cascade and affect CRISPR interference. Our work establishes the mechanism of cellular DNA surveillance by Cascade that allows the timely detection of invading DNA in a crowded, DNA-packed environment.


Assuntos
Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/genética , RNA Guia de Cinetoplastídeos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Replicação do DNA/genética , Dosagem de Genes/genética
2.
Nat Methods ; 21(6): 1074-1081, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225387

RESUMO

In single-particle tracking, individual particles are localized and tracked over time to probe their diffusion and molecular interactions. Temporal crossing of trajectories, blinking particles, and false-positive localizations present computational challenges that have remained difficult to overcome. Here we introduce a robust, parameter-free alternative to single-particle tracking: temporal analysis of relative distances (TARDIS). In TARDIS, an all-to-all distance analysis between localizations is performed with increasing temporal shifts. These pairwise distances represent either intraparticle distances originating from the same particle, or interparticle distances originating from unrelated particles, and are fitted analytically to obtain quantitative measures on particle dynamics. We showcase that TARDIS outperforms tracking algorithms, benchmarked on simulated and experimental data of varying complexity. We further show that TARDIS performs accurately in complex conditions characterized by high particle density, strong emitter blinking or false-positive localizations, and is in fact limited by the capabilities of localization algorithms. TARDIS' robustness enables fivefold shorter measurements without loss of information.


Assuntos
Algoritmos , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos , Simulação por Computador , Difusão
3.
Nucleic Acids Res ; 52(9): 5241-5256, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647045

RESUMO

CRISPR-Cas systems have widely been adopted as genome editing tools, with two frequently employed Cas nucleases being SpyCas9 and LbCas12a. Although both nucleases use RNA guides to find and cleave target DNA sites, the two enzymes differ in terms of protospacer-adjacent motif (PAM) requirements, guide architecture and cleavage mechanism. In the last years, rational engineering led to the creation of PAM-relaxed variants SpRYCas9 and impLbCas12a to broaden the targetable DNA space. By employing their catalytically inactive variants (dCas9/dCas12a), we quantified how the protein-specific characteristics impact the target search process. To allow quantification, we fused these nucleases to the photoactivatable fluorescent protein PAmCherry2.1 and performed single-particle tracking in cells of Escherichia coli. From our tracking analysis, we derived kinetic parameters for each nuclease with a non-targeting RNA guide, strongly suggesting that interrogation of DNA by LbdCas12a variants proceeds faster than that of SpydCas9. In the presence of a targeting RNA guide, both simulations and imaging of cells confirmed that LbdCas12a variants are faster and more efficient in finding a specific target site. Our work demonstrates the trade-off of relaxing PAM requirements in SpydCas9 and LbdCas12a using a powerful framework, which can be applied to other nucleases to quantify their DNA target search.


Assuntos
Proteína 9 Associada à CRISPR , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , DNA/metabolismo , DNA/genética , DNA/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes/métodos , Cinética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(11): e2219916120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881630

RESUMO

The signaling molecule auxin coordinates many growth and development processes in plants, mainly through modulating gene expression. Transcriptional response is mediated by the family of auxin response factors (ARF). Monomers of this family recognize a DNA motif and can homodimerize through their DNA-binding domain (DBD), enabling cooperative binding to an inverted binding site. Most ARFs further contain a C-terminal PB1 domain that is capable of homotypic interactions and mediating interactions with Aux/IAA repressors. Given the dual role of the PB1 domain, and the ability of both DBD and PB1 domain to mediate dimerization, a key question is how these domains contribute to DNA-binding specificity and affinity. So far, ARF-ARF and ARF-DNA interactions have mostly been approached using qualitative methods that do not provide a quantitative and dynamic view on the binding equilibria. Here, we utilize a DNA binding assay based on single-molecule Förster resonance energy transfer (smFRET) to study the affinity and kinetics of the interaction of several Arabidopsis thaliana ARFs with an IR7 auxin-responsive element (AuxRE). We show that both DBD and PB1 domains of AtARF2 contribute toward DNA binding, and we identify ARF dimer stability as a key parameter in defining binding affinity and kinetics across AtARFs. Lastly, we derived an analytical solution for a four-state cyclic model that explains both the kinetics and the affinity of the interaction between AtARF2 and IR7. Our work demonstrates that the affinity of ARFs toward composite DNA response elements is defined by dimerization equilibrium, identifying this as a key element in ARF-mediated transcriptional activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Arabidopsis/genética , Sítios de Ligação , Ácidos Indolacéticos , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(39): 24557-24566, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929017

RESUMO

The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to cis-regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF-DNA interaction. We show that a single additional hydrogen bond in Arabidopsis ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the Arabidopsis TMO5 and IAA11 promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in cis-element function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Elementos de Resposta , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Ácidos Indolacéticos/metabolismo , Sequências Repetidas Invertidas , Família Multigênica , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição/genética
6.
Nano Lett ; 22(21): 8618-8625, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36269936

RESUMO

Single-molecule localization microscopy (SMLM) is a powerful super-resolution technique for elucidating structure and dynamics in the life- and material sciences. Simultaneously acquiring spectral information (spectrally resolved SMLM, sSMLM) has been hampered by several challenges: an increased complexity of the optical detection pathway, lower accessible emitter densities, and compromised spatio-spectral resolution. Here we present a single-component, low-cost implementation of sSMLM that addresses these challenges. Using a low-dispersion transmission grating positioned close to the image plane, the +1stdiffraction order is minimally elongated and is analyzed using existing single-molecule localization algorithms. The distance between the 0th and 1st order provides accurate information on the spectral properties of individual emitters. This method enables a 5-fold higher emitter density while discriminating between fluorophores whose peak emissions are less than 15 nm apart. Our approach can find widespread use in single-molecule applications that rely on distinguishing spectrally different fluorophores under low photon conditions.


Assuntos
Microscopia , Imagem Individual de Molécula , Microscopia/métodos , Imagem Individual de Molécula/métodos , Corantes Fluorescentes/química , Algoritmos , Nanotecnologia
7.
Methods ; 193: 107-115, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32745620

RESUMO

In single-molecule localization microscopy (SMLM), the use of engineered point spread functions (PSFs) provides access to three-dimensional localization information. The conventional approach of fitting PSFs with a single 2-dimensional Gaussian profile, however, often falls short in analyzing complex PSFs created by placing phase masks, deformable mirrors or spatial light modulators in the optical detection pathway. Here, we describe the integration of PSF modalities known as double-helix, saddle-point or tetra-pod into the phasor-based SMLM (pSMLM) framework enabling fast CPU based localization of single-molecule emitters with sub-pixel accuracy in three dimensions. For the double-helix PSF, pSMLM identifies the two individual lobes and uses their relative rotation for obtaining z-resolved localizations. For the analysis of saddle-point or tetra-pod PSFs, we present a novel phasor-based deconvolution approach entitled circular-tangent pSMLM. Saddle-point PSFs were experimentally realized by placing a deformable mirror in the Fourier plane and modulating the incoming wavefront with specific Zernike modes. Our pSMLM software package delivers similar precision and recall rates to the best-in-class software package (SMAP) at signal-to-noise ratios typical for organic fluorophores and achieves localization rates of up to 15 kHz (double-helix) and 250 kHz (saddle-point/tetra-pod) on a standard CPU. We further integrated pSMLM into an existing software package (SMALL-LABS) suitable for single-particle imaging and tracking in environments with obscuring backgrounds. Taken together, we provide a powerful hardware and software environment for advanced single-molecule studies.


Assuntos
Microscopia , Imagem Individual de Molécula , Imageamento Tridimensional , Software
8.
Philos Trans A Math Phys Eng Sci ; 380(2220): 20200164, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152755

RESUMO

Turbidity poses a major challenge for the microscopic characterization of food systems. Local mismatches in refractive indices, for example, lead to significant image deterioration along sample depth. To mitigate the issue of turbidity and to increase the accessible optical resolution in food microscopy, we added adaptive optics (AO) and flat-field illumination to our previously published open microscopy framework, the miCube. In the detection path, we implemented AO via a deformable mirror to compensate aberrations and to modulate the emission wavefront enabling the engineering of point spread functions (PSFs) for single-molecule localization microscopy (SMLM) in three dimensions. As a model system for a non-transparent food colloid such as mayonnaise, we designed an oil-in-water emulsion containing the ferric ion binding protein phosvitin commonly present in egg yolk. We targeted phosvitin with fluorescently labelled primary antibodies and used PSF engineering to obtain two- and three-dimensional images of phosvitin covered oil droplets with sub 100 nm resolution. Our data indicated that phosvitin is homogeneously distributed at the interface. With the possibility to obtain super-resolved images in depth, our work paves the way for localizing biomacromolecules at heterogeneous colloidal interfaces in food emulsions. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.


Assuntos
Microscopia , Imagem Individual de Molécula , Emulsões , Imageamento Tridimensional
9.
J Biol Chem ; 295(27): 9012-9020, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32385112

RESUMO

Eukaryotic DNA polymerase ß (Pol ß) plays an important role in cellular DNA repair, as it fills short gaps in dsDNA that result from removal of damaged bases. Since defects in DNA repair may lead to cancer and genetic instabilities, Pol ß has been extensively studied, especially its mechanisms for substrate binding and a fidelity-related conformational change referred to as "fingers closing." Here, we applied single-molecule FRET to measure distance changes associated with DNA binding and prechemistry fingers movement of human Pol ß. First, using a doubly labeled DNA construct, we show that Pol ß bends the gapped DNA substrate less than indicated by previously reported crystal structures. Second, using acceptor-labeled Pol ß and donor-labeled DNA, we visualized dynamic fingers closing in single Pol ß-DNA complexes upon addition of complementary nucleotides and derived rates of conformational changes. We further found that, while incorrect nucleotides are quickly rejected, they nonetheless stabilize the polymerase-DNA complex, suggesting that Pol ß, when bound to a lesion, has a strong commitment to nucleotide incorporation and thus repair. In summary, the observation and quantification of fingers movement in human Pol ß reported here provide new insights into the delicate mechanisms of prechemistry nucleotide selection.


Assuntos
DNA Polimerase beta/metabolismo , DNA/metabolismo , Cristalografia por Raios X/métodos , DNA Polimerase I/química , DNA Polimerase beta/fisiologia , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Conformação Proteica , Especificidade por Substrato/fisiologia
11.
Nat Methods ; 15(9): 669-676, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171252

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Laboratórios/normas , Reprodutibilidade dos Testes
12.
Nucleic Acids Res ; 47(20): 10788-10800, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31544938

RESUMO

DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets; some proteins recognise specific DNA sequences, while others interact with specific DNA structures. While sequence-specific DNA binding has been studied extensively, structure-specific recognition mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I Klenow Fragment (Pol) substrates both alone and in DNA-Pol complexes. Using a docking approach based on a network of 73 distances collected using single-molecule FRET, we determined a novel solution structure of the single-nucleotide-gapped DNA-Pol binary complex. The structure resembled existing crystal structures with regards to the downstream primer-template DNA substrate, and revealed a previously unobserved sharp bend (∼120°) in the DNA substrate; this pronounced bend was present in living cells. MD simulations and single-molecule assays also revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Further, experiments and coarse-grained modelling showed the substrate alone frequently adopts bent conformations with 1-2 nt fraying around the gap, suggesting a mechanism wherein Pol recognises a pre-bent, partially-melted conformation of gapped DNA. We propose a general mechanism for substrate recognition by structure-specific enzymes driven by protein sensing of the conformational dynamics of their DNA substrates.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Sequência de Bases , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Especificidade por Substrato
13.
Biophys J ; 119(10): 1970-1983, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33086040

RESUMO

Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.


Assuntos
Algoritmos , Imagem Individual de Molécula , Difusão , Escherichia coli , Cinética
15.
Langmuir ; 36(20): 5502-5509, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32343144

RESUMO

Hydrogels made of the polysaccharide κ-carrageenan are widely used in the food and personal care industry as thickeners or gelling agents. These hydrogels feature dense regions embedded in a coarser bulk network, but the characteristic size and behavior of these regions have remained elusive. Here, we use single-particle-tracking fluorescence microscopy (sptFM) to quantitatively describe κ-carrageenan gels. Infusing fluorescent probes into fully gelated κ-carrageenan hydrogels resulted in two distinct diffusional behaviors. Obstructed self-diffusion of the probes revealed that the coarse network consists of κ-carrageenan strands with a typical diameter of 3.2 ± 0.3 nm leading to a nanoprobe diffusion coefficient of ∼1-5 × 10-12 m2/s. In the dense network regions, we found a fraction with a largely decreased diffusion coefficient of ∼1 × 10-13 m2/s. We also observed dynamic exchange between these states. The computation of spatial mobility maps from the diffusional data indicated that the dense network regions have a characteristic diameter of ∼1 µm and show mobility on the second-to-minute timescale. sptFM provides an unprecedented view of spatiotemporal heterogeneity of hydrogel networks, which we believe bears general relevance for understanding transport and release of both low- and high-molecular weight solutes.

16.
Phys Biol ; 16(3): 035001, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30673632

RESUMO

Lactic acid bacteria (LAB) are frequently used in food fermentation and are invaluable for the taste and nutritional value of the fermentation end-product. To gain a better understanding of underlying biochemical and microbiological mechanisms and cell-to-cell variability in LABs, single-molecule techniques such as single-particle tracking photo-activation localization microscopy (sptPALM) hold great promises but are not yet employed due to the lack of detailed protocols and suitable assays. Here, we qualitatively test various fluorescent proteins including variants that are photoactivatable and therefore suitable for sptPALM measurements in Lactococcus lactis, a key LAB for the dairy industry. In particular, we fused PAmCherry2 to dCas9 allowing the successful tracking of single dCas9 proteins, whilst the dCas9 chimeras bound to specific guide RNAs retained their gene silencing ability in vivo. The diffusional information of the dCas9 without any targets showed different mechanistic states of dCas9: freely diffusing, bound to DNA, or transiently interacting with DNA. The capability of performing sptPALM with dCas9 in L. lactis can lead to a better, general understanding of CRISPR-Cas systems as well as paving the way for CRISPR-Cas based interrogations of cellular functions in LABs.


Assuntos
Lactococcus lactis/isolamento & purificação , Proteínas Luminescentes/análise , Sistemas CRISPR-Cas , Microscopia de Fluorescência , Processos Fotoquímicos
17.
J Chem Phys ; 148(12): 123311, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604874

RESUMO

We present a fast and model-free 2D and 3D single-molecule localization algorithm that allows more than 3 × 106 localizations per second to be calculated on a standard multi-core central processing unit with localization accuracies in line with the most accurate algorithms currently available. Our algorithm converts the region of interest around a point spread function to two phase vectors (phasors) by calculating the first Fourier coefficients in both the x- and y-direction. The angles of these phasors are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction). Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as a first estimator for more time consuming iterative algorithms.

18.
Phys Chem Chem Phys ; 19(6): 4222-4230, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28116374

RESUMO

We developed a versatile DNA assay and framework for monitoring polymerization of DNA in real time and at the single-molecule level. The assay consists of an acceptor labelled DNA primer annealed to a DNA template that is labelled on its single stranded, downstream overhang with a donor fluorophore. Upon extension of the primer using a DNA polymerase, the overhang of the template alters its conformation from a random coil to the canonical structure of double stranded DNA. This conformational change increases the distance between the donor and the acceptor fluorophore and can be detected as a decrease in the Förster resonance energy transfer (FRET) efficiency between both fluorophores. Remarkably, the DNA assay does not require any modification of the DNA polymerase and albeit the simple and robust spectroscopic readout facilitates measurements even with conventional fluorimeters or stopped-flow equipment, single-molecule FRET provides additional access to parameters such as the processivity of DNA synthesis and, for one of the three DNA polymerases tested, the detection of binding and dissociation of the DNA polymerase to DNA. We furthermore demonstrate that primer extensions by a single base can be resolved.


Assuntos
DNA/biossíntese , Transferência Ressonante de Energia de Fluorescência/instrumentação , Técnicas Genéticas , DNA/metabolismo , Primers do DNA/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Conformação de Ácido Nucleico
19.
Nucleic Acids Res ; 43(12): 5998-6008, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26013816

RESUMO

DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s(-1), much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA/biossíntese , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Movimento (Física) , Conformação Proteica
20.
J Fluoresc ; 26(3): 963-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26972111

RESUMO

Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels. As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale. The 3D orientation is particularly interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination at different timescales and quantifying the associated errors. The vesicles provide a well-defined spherical surface, such that the use of fluorescent lipid dyes (DiO) allows to establish a a wide range of dipole orientations experimentally. To complement our experimental data, we performed Monte Carlo simulations of the rotational dynamics of dipoles incorporated into lipid membranes. Our study offers a comprehensive view on the dye orientation behavior in a lipid membrane with high spatiotemporal resolution representing a six-dimensional fluorescence detection approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA