Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Neurol ; 376: 114756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508482

RESUMO

Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.


Assuntos
Transtorno do Espectro Autista , Espinhas Dendríticas , Neuroglia , Ubiquitina-Proteína Ligases , Animais , Camundongos , Astrócitos/metabolismo , Astrócitos/patologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Células Cultivadas , Espinhas Dendríticas/patologia , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/patologia , Trombospondinas/metabolismo , Trombospondinas/genética , Trombospondinas/biossíntese , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
ACS Chem Neurosci ; 15(2): 357-370, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38150333

RESUMO

The serotonin (5-hydroxytryptamine, 5-HT) 5-HT1 G-protein coupled receptor subtypes (5-HT1A/1B/1D/1E/1F) share a high sequence homology, confounding development of subtype-specific ligands. This study used a 5-HT1 structure-based ligand design approach to develop subtype-selective ligands using a 5-substituted-2-aminotetralin (5-SAT) chemotype, leveraging results from pharmacological, molecular modeling, and mutagenesis studies to delineate molecular determinants for 5-SAT binding and function at 5-HT1 subtypes. 5-SATs demonstrated high affinity (Ki ≤ 25 nM) and at least 50-fold stereoselective preference ([2S] > [2R]) at 5-HT1A, 5-HT1B, and 5-HT1D receptors but essentially nil affinity (Ki > 1 µM) at 5-HT1F receptors. The 5-SATs tested were agonists with varying degrees of potency and efficacy, depending on chemotype substitution and 5-HT1 receptor subtype. Models were built from the 5-HT1A (cryo-EM), 5-HT1B (crystal), and 5-HT1D (cryo-EM) structures, and 5-SATs underwent docking studies with up to 1 µs molecular dynamics simulations. 5-SAT interactions observed at positions 3.33, 5.38, 5.42, 5.43, and 7.39 of 5-HT1 subtypes were confirmed with point mutation experiments. Additional 5-SATs were designed and synthesized to exploit experimental and computational results, yielding a new full efficacy 5-HT1A agonist with 100-fold selectivity over 5-HT1B/1D receptors. The results presented lay the foundation for the development of additional 5-HT1 subtype selective ligands for drug discovery purposes.


Assuntos
Receptor 5-HT1F de Serotonina , Serotonina , Tetra-Hidronaftalenos , Serotonina/metabolismo , Receptores de Serotonina/genética , Agonistas do Receptor de Serotonina/farmacologia , Ligantes , Receptores 5-HT1 de Serotonina , Receptor 5-HT1B de Serotonina
3.
Neurosci Biobehav Rev ; 133: 104501, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942269

RESUMO

Research concerning Alcohol Use Disorder (AUD) has previously focused primarily on either the behavioral or chemical consequences experienced following ethanol intake, but these areas of research have rarely been considered in tandem. Compared with other drugs of abuse, ethanol has been shown to have a unique metabolic pathway once it enters the body, which leads to the formation of downstream metabolites which can go on to form biologically active products. These metabolites can mediate a variety of behavioral responses that are commonly observed with AUD, such as ethanol intake, reinforcement, and vulnerability to relapse. The following review considers the preclinical and chemical research implicating these downstream products in AUD and proposes a chemobehavioral model of AUD.


Assuntos
Alcoolismo , Consumo de Bebidas Alcoólicas , Alcoolismo/metabolismo , Etanol/efeitos adversos , Humanos , Reforço Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA