Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Chembiochem ; 25(1): e202300539, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837257

RESUMO

Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , DNA
2.
Chemistry ; 30(24): e202400137, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403849

RESUMO

Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , RNA/química , RNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Oligonucleotídeos/síntese química , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/metabolismo
3.
Chembiochem ; 24(15): e202300191, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119472

RESUMO

Chemical cell surface modification is a fast-growing field of research, due to its enormous potential in tissue engineering, cell-based immunotherapy, and regenerative medicine. However, engineering of bacterial tissues by chemical cell surface modification has been vastly underexplored and the identification of suitable molecular handles is in dire need. We present here, an orthogonal nucleic acid-protein conjugation strategy to promote artificial bacterial aggregation. This system gathers the high selectivity and stability of linkage to a protein Tag expressed at the cell surface and the modularity and reversibility of aggregation due to oligonucleotide hybridization. For the first time, XNA (xeno nucleic acids in the form of 1,5-anhydrohexitol nucleic acids) were immobilized via covalent, SNAP-tag-mediated interactions on cell surfaces to induce bacterial aggregation.


Assuntos
Escherichia coli , Ácidos Nucleicos , Escherichia coli/genética , DNA/química , Ácidos Nucleicos/química , Hibridização de Ácido Nucleico , Oligonucleotídeos/química
4.
Inorg Chem ; 62(45): 18510-18523, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37913550

RESUMO

Lack of selectivity is one of the main issues with currently used chemotherapies, causing damage not only to altered cells but also to healthy cells. Over the last decades, photodynamic therapy (PDT) has increased as a promising therapeutic tool due to its potential to treat diseases like cancer or bacterial infections with a high spatiotemporal control. Ruthenium(II) polypyridyl compounds are gaining attention for their application as photosensitizers (PSs) since they are generally nontoxic in dark conditions, while they show remarkable toxicity after light irradiation. In this work, four Ru(II) polypyridyl compounds with sterically expansive ligands were studied as PDT agents. The Ru(II) complexes were synthesized using an alternative route to those described in the literature, which resulted in an improvement of the synthesis yields. Solid-state structures of compounds [Ru(DIP)2phen]Cl2 and [Ru(dppz)2phen](PF6)2 have also been obtained. It is well-known that compound [Ru(dppz)(phen)2]Cl2 binds to DNA by intercalation. Therefore, we used [Ru(dppz)2phen]Cl2 as a model for DNA interaction studies, showing that it stabilized two different sequences of duplex DNA. Most of the synthesized Ru(II) derivatives showed very promising singlet oxygen quantum yields, together with noteworthy photocytotoxic properties against two different cancer cell lines, with IC50 in the micro- or even nanomolar range (0.06-7 µM). Confocal microscopy studies showed that [Ru(DIP)2phen]Cl2 and [Ru(DIP)2TAP]Cl2 accumulate preferentially in mitochondria, while no mitochondrial internalization was observed for the other compounds. Although [Ru(dppn)2phen](PF6)2 did not accumulate in mitochondria, it interestingly triggered an impairment in mitochondrial respiration after light irradiation. Among others, [Ru(dppn)2phen](PF6)2 stands out for its very good IC50 values, correlated with a very high singlet oxygen quantum yield and mitochondrial respiration disruption.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Complexos de Coordenação/química , Rutênio/farmacologia , Rutênio/química , Oxigênio Singlete/metabolismo , DNA , Ligantes
5.
Proc Natl Acad Sci U S A ; 117(29): 16790-16798, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631977

RESUMO

Nucleic acid aptamers selected through systematic evolution of ligands by exponential enrichment (SELEX) fold into exquisite globular structures in complex with protein targets with diverse translational applications. Varying the chemistry of nucleotides allows evolution of nonnatural nucleic acids, but the extent to which exotic chemistries can be integrated into a SELEX selection to evolve nonnatural macromolecular binding interfaces is unclear. Here, we report the identification of a cubane-modified aptamer (cubamer) against the malaria biomarker Plasmodium vivax lactate dehydrogenase (PvLDH). The crystal structure of the complex reveals an unprecedented binding mechanism involving a multicubane cluster within a hydrophobic pocket. The binding interaction is further stabilized through hydrogen bonding via cubyl hydrogens, previously unobserved in macromolecular binding interfaces. This binding mechanism allows discriminatory recognition of P. vivax over Plasmodium falciparum lactate dehydrogenase, thereby distinguishing these highly conserved malaria biomarkers for diagnostic applications. Together, our data demonstrate that SELEX can be used to evolve exotic nucleic acids bearing chemical functional groups which enable remarkable binding mechanisms which have never been observed in biology. Extending to other exotic chemistries will open a myriad of possibilities for functional nucleic acids.


Assuntos
Aptâmeros de Nucleotídeos/química , L-Lactato Desidrogenase/química , Malária/diagnóstico , Proteínas de Protozoários/química , Biomarcadores/sangue , Biomarcadores/química , Humanos , Ligação de Hidrogênio , L-Lactato Desidrogenase/sangue , Malária/sangue , Técnicas de Diagnóstico Molecular/métodos , Simulação de Dinâmica Molecular , Plasmodium vivax/enzimologia , Ligação Proteica
6.
Chembiochem ; 23(15): e202200006, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35416400

RESUMO

In the past three decades, in vitro systematic evolution of ligands by exponential enrichment (SELEX) has yielded many aptamers for translational applications in both research and clinical settings. Despite their promise as an alternative to antibodies, the low success rate of SELEX (∼30 %) has been a major bottleneck that hampers the further development of aptamers. One hurdle is the lack of chemical diversity in nucleic acids. To address this, the aptamer chemical repertoire has been extended by introducing exotic chemical groups, which provide novel binding functionalities. This review will focus on how modified aptamers can be selected and evolved, with illustration of some successful examples. In particular, unique chemistries are exemplified. Various strategies of incorporating modified building blocks into the standard SELEX protocol are highlighted, with a comparison of the differences between pre-SELEX and post-SELEX modifications. Nucleic acid aptamers with extended functionality evolved from non-natural chemistries will open up new vistas for function and application of nucleic acids.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Anticorpos , Aptâmeros de Nucleotídeos/metabolismo , Ligantes , Técnica de Seleção de Aptâmeros/métodos
7.
Org Biomol Chem ; 20(41): 8125-8135, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36217966

RESUMO

Methods for the real-time monitoring of the substrate acceptance of modified nucleotides by DNA polymerases are in high demand. In a step towards this aim, we have incorporated ferrocene-based abasic nucleotides into DNA templates and evaluated their compatibility with enzymatic synthesis of unmodified and modified DNA. All canonical nucleotides can be incorporated opposite ferrocene sites with a strong preference for purines. DNA polymerases with lesion-bypass capacity such as Dpo4 allow DNA synthesis to be resumed beyond the site of incorporation. Modified purine nucleotides can readily be incorporated opposite ferrocene basic site analogs, while pyrimidine nucleotides decorated with simple side-chains are also readily tolerated. These findings open up directions for the design of electrochemical sensing devices for the monitoring of enzymatic synthesis of natural or modified DNA.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Metalocenos , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos , Dano ao DNA , Purinas , Nucleotídeos de Pirimidina , Nucleotídeos de Purina
8.
Chem Soc Rev ; 50(8): 5126-5164, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33644787

RESUMO

While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications. In medicine, antisense oligonucleotides (ASOs), siRNAs, and therapeutic aptamers are explored as potent targeted treatment and diagnostic modalities, while in the technological field oligonucleotides have found use in new materials, catalysis, and data storage. The use of natural oligonucleotides limits the possible chemical functionality of resulting technologies while inherent shortcomings, such as susceptibility to nuclease degradation, provide obstacles to their application. Modified oligonucleotides, at the level of the nucleobase, sugar and/or phosphate backbone, are widely used to overcome these limitations. This review provides the reader with an overview of non-native modifications and the challenges faced in the design, synthesis, application and outlook of novel modified oligonucleotides.


Assuntos
DNA/metabolismo , RNA/metabolismo , DNA/química , Humanos , Conformação de Ácido Nucleico , RNA/química
9.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558056

RESUMO

Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Vancomicina , Vancomicina/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA , Nucleotídeos , Oligonucleotídeos , Antibacterianos/farmacologia , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/farmacologia
10.
J Am Chem Soc ; 143(14): 5413-5424, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797236

RESUMO

Methods for tracking RNA inside living cells without perturbing their natural interactions and functions are critical within biology and, in particular, to facilitate studies of therapeutic RNA delivery. We present a stealth labeling approach that can efficiently, and with high fidelity, generate RNA transcripts, through enzymatic incorporation of the triphosphate of tCO, a fluorescent tricyclic cytosine analogue. We demonstrate this by incorporation of tCO in up to 100% of the natural cytosine positions of a 1.2 kb mRNA encoding for the histone H2B fused to GFP (H2B:GFP). Spectroscopic characterization of this mRNA shows that the incorporation rate of tCO is similar to cytosine, which allows for efficient labeling and controlled tuning of labeling ratios for different applications. Using live cell confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently translated into H2B:GFP inside human cells. Hence, we not only develop the use of fluorescent base analogue labeling of nucleic acids in live-cell microscopy but also, importantly, show that the resulting transcript is translated into the correct protein. Moreover, the spectral properties of our transcripts and their translation product allow for their straightforward, simultaneous visualization in live cells. Finally, we find that chemically transfected tCO-labeled RNA, unlike a state-of-the-art fluorescently labeled RNA, gives rise to expression of a similar amount of protein as its natural counterpart, hence representing a methodology for studying natural, unperturbed processing of mRNA used in RNA therapeutics and in vaccines, like the ones developed against SARS-CoV-2.


Assuntos
Fluorescência , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Imagem Molecular , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Citosina/análogos & derivados , Citosina/análise , Citosina/síntese química , Citosina/química , Corantes Fluorescentes/síntese química , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Humanos , Estrutura Molecular , RNA Mensageiro/química , RNA Mensageiro/uso terapêutico , Espectrometria de Fluorescência , Tratamento Farmacológico da COVID-19
11.
Bioorg Med Chem Lett ; 48: 128242, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217829

RESUMO

Therapeutic oligonucleotides require the addition of multiple chemical modifications to the nucleosidic scaffold in order to improve their drug delivery efficiency, cell penetration capacity, biological stability, and pharmacokinetic properties. This chemical modification pattern is often accompanied by a synthetic burden and by limitations in sequence length. Here, we have synthesized a nucleoside triphosphate analog bearing two simultaneous modifications at the level of the sugar (LNA) and the backbone (thiophosphate) and have tested its compatibility with enzymatic DNA synthesis which could abrogate some of these synthetic limitations. While this novel analog is not as well tolerated by polymerases compared to the corresponding α-thio-dTTP or LNA-TTP, α -thio-LNA-TTP can readily be used for enzymatic synthesis on universal templates for the introduction of phosphorothioated LNA nucleotides.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Oligonucleotídeos Fosforotioatos/biossíntese , Conformação de Ácido Nucleico , Oligonucleotídeos Fosforotioatos/química
12.
Chembiochem ; 21(10): 1408-1411, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31889390

RESUMO

Xenobiology is an emerging area of synthetic biology that aims to safeguard genetically engineered cells by storing synthetic biology information in xeno-nucleic acid polymers (XNAs). Critical to the success of this effort is the need to establish cellular systems that can maintain an XNA chromosome in actively dividing cells. This viewpoint discusses the structural parameters of the nucleic acid backbone that should be considered when designing an orthogonal genetic system that can replicate without interference from the endogenous genome. In addition to practical value, these studies have the potential to provide new fundamental insight into the structure and function properties of unnatural nucleic acid polymers.


Assuntos
Biopolímeros/química , Engenharia Genética/métodos , Ácidos Nucleicos/química , Biologia Sintética/métodos , Animais , Humanos , Conformação de Ácido Nucleico
13.
Chembiochem ; 21(23): 3398-3409, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673442

RESUMO

Th formation of metal base pairs is a versatile method for the introduction of metal cations into nucleic acids that has been used in numerous applications including the construction of metal nanowires, development of energy, charge-transfer devices and expansion of the genetic alphabet. As an alternative, enzymatic construction of metal base pairs is an alluring strategy that grants access to longer sequences and offers the possibility of using such unnatural base pairs (UBPs) in SELEX experiments for the identification of functional nucleic acids. This method remains rather underexplored, and a better understanding of the key parameters in the design of efficient nucleotides is required. We have investigated the effect of methylation of the imidazole nucleoside (dImnMe TP) on the efficiency of the enzymatic construction of metal base pairs. The presence of methyl substituents on dImTP facilitates the polymerase-driven formation of dIm4Me -AgI -dIm and dIm2Me TP-CrIII -dIm base pairs. Steric factors rather than the basicity of the imidazole nucleobase appear to govern the enzymatic formation of such metal base pairs. We also demonstrate the compatibility of other metal cations rarely considered in the construction of artificial metal bases by enzymatic DNA synthesis under both primer extension reaction and PCR conditions. These findings open up new directions for the design of nucleotide analogues for the development of metal base pairs.


Assuntos
Complexos de Coordenação/metabolismo , Cobre/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Imidazóis/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , DNA Polimerase Dirigida por DNA/química , Imidazóis/química , Estrutura Molecular
14.
Chemphyschem ; 21(10): 1044-1051, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32191377

RESUMO

The isotopic enrichment of nucleic acids with nitrogen-15 is often carried out by solid-phase synthesis of oligonucleotides using phosphoramidite precursors that are synthetically demanding and expensive. These synthetic challenges, combined with the overlap of chemical shifts, explain the lag of nitrogen-15 NMR studies of nucleic acids behind those of proteins. For the structural characterization of DNA and RNA-related systems, new NMR methods that exploit the naturally occurring 99.9 % abundant nitrogen-14 isotope are therefore highly desirable. In this study, we have investigated nitrogen-14 spectra of self-assembled quartets based on the nucleobase guanine in the solid state by means of magic-angle spinning NMR spectroscopy. The network of dipolar proton-nitrogen couplings between neighboring stacked purine units is probed by 2D spectra based on 1 H→14 N→1 H double cross-polarization. Interplane dipolar contacts are identified between the stacked G quartets. The assignment is supported by density functional theory (DFT) calculations of the anisotropic chemical shifts and quadrupolar parameters. The experimental spectra are fully consistent with internuclear distances obtained in silico. Averaging of chemical shifts due to internal motions can be interpreted by semiempirical calculations. This method can easily be extended to synthetic G quartets based on nucleobase or nucleoside analogs and potentially to oligonucleotides.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , RNA/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Nitrogênio/química
15.
Bioorg Med Chem ; 28(11): 115487, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284226

RESUMO

The incorporation of nucleotides equipped with C-glycosidic aromatic nucleobases into DNA and RNA is an alluring strategy for a number of practical applications including fluorescent labelling of oligonucleotides, expansion of the genetic alphabet for the generation of aptamers and semi-synthetic organisms, or the modulation of excess electron transfer within DNA. However, the generation of C-nucleoside containing oligonucleotides relies mainly on solid-phase synthesis which is quite labor intensive and restricted to short sequences. Here, we explore the possibility of constructing biphenyl-modified DNA sequences using enzymatic synthesis. The presence of multiple biphenyl-units or biphenyl residues modified with electron donors and acceptors permits the incorporation of a single dBphMP nucleotide. Moreover, templates with multiple abasic sites enable the incorporation of up to two dBphMP nucleotides, while TdT-mediated tailing reactions produce single-stranded DNA oligonucleotides with four biphenyl residues appended at the 3'-end.


Assuntos
Compostos de Bifenilo/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Oligonucleotídeos/biossíntese , Compostos de Bifenilo/química , DNA/química , Humanos , Estrutura Molecular , Oligonucleotídeos/química
16.
Methods ; 161: 64-82, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30905751

RESUMO

RNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles. In addition, numerous RNA-based tools such as ribozymes, aptamers, or therapeutic oligonucleotides require the presence of additional chemical functionalities to strengthen the nucleosidic backbone against degradation or enhance the desired catalytic or binding properties. Herein, the two main methods for the chemical modification of RNA are presented: solid-phase synthesis using phosphoramidite precursors and the enzymatic polymerization of nucleoside triphosphates. The different synthetic and biochemical steps required for each method are carefully described and recent examples of practical applications based on these two methods are discussed.


Assuntos
Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/genética , RNA/síntese química , RNA/genética , Técnicas de Síntese em Fase Sólida/métodos , Animais , Humanos , Oligonucleotídeos/síntese química , Oligonucleotídeos/genética , Técnicas de Síntese em Fase Sólida/tendências
17.
Chembiochem ; 20(7): 860-871, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30451377

RESUMO

The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.


Assuntos
DNA Nucleotidilexotransferase/química , DNA de Cadeia Simples/síntese química , DNA Polimerase Dirigida por DNA/química , Pareamento de Bases , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Células HeLa , Humanos , Metais/metabolismo , Nucleotídeos/química , Oligonucleotídeos/síntese química , Saccharomyces cerevisiae
18.
Chembiochem ; 20(24): 3032-3040, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31216100

RESUMO

The formation of artificial metal base pairs is an alluring and versatile method for the functionalization of nucleic acids. Access to DNA functionalized with metal base pairs is granted mainly by solid-phase synthesis. An alternative, yet underexplored method, envisions the installation of metal base pairs through the polymerization of modified nucleoside triphosphates. Herein, we have explored the possibility of using thiolated and pKa -perturbed nucleotides for the enzymatic construction of artificial metal base pairs. The thiolated nucleotides S2C, S6G, and S4T as well as the fluorinated analogue 5FU are readily incorporated opposite a templating S4T nucleotide through the guidance of metal cations. Multiple incorporation of the modified nucleotides along with polymerase bypass of the unnatural base pairs are also possible under certain conditions. The thiolated nucleotides S4T, S4T, S2C, and S6G were also shown to be compatible with the synthesis of modified, high molecular weight single-stranded (ss)DNA products through TdT-mediated tailing reactions. Thus, sulfur-substitution and pKa perturbation represent alternative strategies for the design of modified nucleotides compatible with the enzymatic construction of metal base pairs.


Assuntos
Pareamento de Bases , Fenômenos Químicos , Metais/química , Nucleotídeos/química , Nucleotídeos/metabolismo , Compostos de Sulfidrila/química , Sequência de Bases , DNA Nucleotidilexotransferase/metabolismo , Concentração de Íons de Hidrogênio , Nucleotídeos/genética
19.
Org Biomol Chem ; 17(35): 8083-8087, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31460550

RESUMO

A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.


Assuntos
Aptâmeros de Nucleotídeos/química , Arabinose/análogos & derivados , Uridina Trifosfato/química , Arabinose/química , Sítios de Ligação , Configuração de Carboidratos , DNA/química , DNA/genética
20.
Chembiochem ; 19(5): 422-424, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29239531

RESUMO

Swap and extend: The autonomous synthesis of single-stranded DNA molecules of arbitrary size and sequence composition can easily be achieved by primer exchange reaction (PER) cascades, in which the sequential polymerase-mediated extension of DNA primers is guided by catalytic hairpins. This highlight illustrates the potential of this method for applications in DNA nanotechnology.


Assuntos
DNA de Cadeia Simples/síntese química , Primers do DNA/síntese química , Primers do DNA/química , DNA de Cadeia Simples/química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA