Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Leukoc Biol ; 79(4): 757-66, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16434691

RESUMO

Peripheral blood monocyte subpopulations have been reported and can give rise to diverse, differentiated phenotypes. A subpopulation(s) of human monocytes can proliferate in vitro in response to macrophage-colony stimulating factor (M-CSF; or CSF-1). This population, termed the proliferative monocyte (PM), is presumably less mature than other monocytes; however, it has not been defined further. Previous studies monitoring the frequency of the slowly cycling PM from different donors indicated that the assay for their reproducible measurement required improvement. We demonstrate that for optimal PM detection, high 5-bromo-2'-deoxyuridine concentrations are required over a delayed and wide time-frame. Surface marker phenotyping by flow cytometry showed that freshly isolated PM are CD14+ and could be distinguished from two other human monocyte subpopulations, namely, the CD14lo CD16+ and CD14lo CD64- subsets. PM express relatively high levels of CD64 and CD33 but have relatively low CD13 expression; they are also c-Fms+ and human leukocyte antigen-DR+. Labeling with carboxyfluorescein diacetate succinimidyl ester (CFSE) enabled the estimation of the number of PM divisions over time. Following CFSE labeling and culture, PM were sorted from the nonproliferating population and shown to have a distinctive, spindle-shaped morphology and higher capacity to form multinucleated, tartrate-resistant acid phosphatase+ cells in the presence of M-CSF and receptor activator of nuclear factor-kappaB ligand. The phenotype and properties of the PM subpopulation were examined as a prelude to determining its role in disease using methods that can be applied to clarify human monocyte heterogeneity.


Assuntos
Monócitos/imunologia , Antígenos CD/biossíntese , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Imunofenotipagem , Técnicas In Vitro , Fator Estimulador de Colônias de Macrófagos/imunologia , Monócitos/classificação , Monócitos/citologia
2.
Mol Pharmacol ; 61(4): 768-77, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11901215

RESUMO

Binding of the peptide hormone angiotensin II (AngII) to the type 1 (AT(1A)) receptor and the subsequent activation of phospholipase C-mediated signaling, involves specific determinants within the AngII peptide sequence. In contrast, the contribution of such determinants to AT(1A) receptor internalization, phosphorylation and activation of mitogen-activated protein kinase (MAPK) signaling is not known. In this study, the internalization of an enhanced green fluorescent protein-tagged AT(1A) receptor (AT(1A)-EGFP), in response to AngII and a series of substituted analogs, was visualized and quantified using confocal microscopy. AngII-stimulation resulted in a rapid, concentration-dependent internalization of the chimeric receptor, which was prevented by pretreatment with the nonpeptide AT(1) receptor antagonist EXP3174. Remarkably, AT(1A) receptor internalization was unaffected by substitution of AngII side chains, including single and double substitutions of Tyr(4) and Phe(8) that abolish phospholipase C signaling through the receptor. AngII-induced receptor phosphorylation was significantly inhibited by several substitutions at Phe(8) as well as alanine replacement of Asp(1). The activation of MAPK was only significantly inhibited by substitutions at position eight in the peptide and specific substitutions did not equally inhibit inositol phosphate production, receptor phosphorylation and MAPK activation. These results indicate that separate, yet overlapping, contacts made between the AngII peptide and the AT(1A) receptor select/induce distinct receptor conformations that preferentially affect particular receptor outcomes. The requirements for AT(1A) receptor internalization seem to be less stringent than receptor activation and signaling, suggesting an inherent bias toward receptor deactivation.


Assuntos
Angiotensina II/fisiologia , Endocitose/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores de Angiotensina/metabolismo , Transdução de Sinais/fisiologia , Angiotensina II/química , Animais , Células CHO , Cricetinae , Ativação Enzimática , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Fenilalanina/metabolismo , Fosforilação , Receptor Tipo 1 de Angiotensina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA