Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38637154

RESUMO

Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Redes Reguladoras de Genes , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Caracteres Sexuais , Animais , Masculino , Feminino , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Camundongos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Cocaína/farmacologia , Recompensa
2.
Mol Psychiatry ; 27(1): 652-668, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33837268

RESUMO

Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes within brain regions that are implicated in drug addiction exhibit dynamic changes in activity upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic drug exposure. Recent results have identified several key astrocytic signaling pathways that are involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief overview of the role of astrocytes in regulating synaptic transmission and neuronal function, and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also include brief discussion of other drugs of abuse where data are available.


Assuntos
Astrócitos , Transtornos Relacionados ao Uso de Cocaína , Astrócitos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37940687

RESUMO

Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.

4.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293227

RESUMO

Background: Increasing evidence implicates astrocytes in stress and depression in both rodent models and human Major Depressive Disorder (MDD). Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. Methods: We used whole cell sorting, RNA-sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. Results: We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states seen in resilient versus susceptible mice. This bioinformatic result was confirmed at the protein level with immunohistochemistry. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. Conclusions: Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and, for the first time, that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.

5.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559084

RESUMO

Substance use disorder is characterized by a maladaptive imbalance wherein drug seeking persists despite negative consequences or drug unavailability. This imbalance correlates with neurobiological alterations some of which are amplified during forced abstinence, thereby compromising the capacity of extinction-based approaches to prevent relapse. Cocaine use disorder (CUD) exemplifies this phenomenon in which neurobiological modifications hijack brain reward regions such as the nucleus accumbens (NAc) to manifest craving and withdrawal-like symptoms. While increasing evidence links transcriptional changes in the NAc to specific phases of addiction, genome-wide changes in gene expression during withdrawal vs. extinction (WD/Ext) have not been examined in a context- and NAc-subregion-specific manner. Here, we used cocaine self-administration (SA) in rats combined with RNA-sequencing (RNA-seq) of NAc subregions (core and shell) to transcriptionally profile the impact of experiencing withdrawal in the home cage or in the previous drug context or experiencing extinction training. As expected, home-cage withdrawal maintained drug seeking in the previous drug context, whereas extinction training reduced it. By contrast, withdrawal involving repetitive exposure to the previous drug context increased drug-seeking behavior. Bioinformatic analyses of RNA-seq data revealed gene expression patterns, networks, motifs, and biological functions specific to these behavioral conditions and NAc subregions. Comparing transcriptomic analysis of the NAc of patients with CUD highlighted conserved gene signatures, especially with rats that were repetitively exposed to the previous drug context. Collectively, these behavioral and transcriptional correlates of several withdrawal-extinction settings reveal fundamental and translational information about potential molecular mechanisms to attenuate drug-associated memories.

6.
Neuron ; 111(9): 1453-1467.e7, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36889314

RESUMO

The complex nature of the transcriptional networks underlying addictive behaviors suggests intricate cooperation between diverse gene regulation mechanisms that go beyond canonical activity-dependent pathways. Here, we implicate in this process a nuclear receptor transcription factor, retinoid X receptor alpha (RXRα), which we initially identified bioinformatically as associated with addiction-like behaviors. In the nucleus accumbens (NAc) of male and female mice, we show that although its own expression remains unaltered after cocaine exposure, RXRα controls plasticity- and addiction-relevant transcriptional programs in both dopamine receptor D1- and D2-expressing medium spiny neurons, which in turn modulate intrinsic excitability and synaptic activity of these NAc cell types. Behaviorally, bidirectional viral and pharmacological manipulation of RXRα regulates drug reward sensitivity in both non-operant and operant paradigms. Together, this study demonstrates a key role for NAc RXRα in promoting drug addiction and paves the way for future studies of rexinoid signaling in psychiatric disease states.


Assuntos
Cocaína , Transtornos Mentais , Camundongos , Masculino , Feminino , Animais , Núcleo Accumbens/metabolismo , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Neurônios/fisiologia , Cocaína/farmacologia , Receptores de Dopamina D1/metabolismo , Transtornos Mentais/metabolismo , Recompensa , Camundongos Endogâmicos C57BL
7.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37781621

RESUMO

Substance use disorders (SUDs) induce widespread molecular dysregulation in the nucleus accumbens (NAc), a brain region pivotal for coordinating motivation and reward. These molecular changes are thought to support lasting neural and behavioral disturbances that promote drug-seeking in addiction. However, different drug classes exert unique influences on neural circuits, cell types, physiology, and gene expression despite the overlapping symptomatology of SUDs. To better understand common and divergent molecular mechanisms governing SUD pathology, our goal was to survey cell-type-specific restructuring of the NAc transcriptional landscape in after psychostimulant or opioid exposure. We combined fluorescence-activated nuclei sorting and RNA sequencing to profile NAc D1 and D2 medium spiny neurons (MSNs) across cocaine and morphine exposure paradigms, including initial exposure, prolonged withdrawal after repeated exposure, and re-exposure post-withdrawal. Our analyses reveal that D1 MSNs display many convergent transcriptional responses across drug classes during exposure, whereas D2 MSNs manifest mostly divergent responses between cocaine and morphine, with morphine causing more adaptations in this cell type. Utilizing multiscale embedded gene co-expression network analysis (MEGENA), we discerned transcriptional regulatory networks subserving biological functions shared between cocaine and morphine. We observed largely integrative engagement of overlapping gene networks across drug classes in D1 MSNs, but opposite regulation of key D2 networks, highlighting potential therapeutic gene network targets within MSNs. These studies establish a landmark, cell-type-specific atlas of transcriptional regulation induced by cocaine and by morphine that can serve as a foundation for future studies towards mechanistic understanding of SUDs. Our findings, and future work leveraging this dataset, will pave the way for the development of targeted therapeutic interventions, addressing the urgent need for more effective treatments for cocaine use disorder and enhancing the existing strategies for opioid use disorder.

8.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168167

RESUMO

Learned associations between the rewarding effects of drugs and the context in which they are experienced underlie context-induced relapse. Previous work demonstrates the importance of sparse neuronal populations - called neuronal ensembles - in associative learning and cocaine seeking, but it remains unknown whether the encoding vs. retrieval of cocaine-associated memories involves similar or distinct mechanisms of ensemble activation and reactivation in nucleus accumbens (NAc). We use ArcCreER T2 mice to establish that mostly distinct NAc ensembles are recruited by initial vs. repeated exposures to cocaine, which are then differentially reactivated and exert distinct effects during cocaine-related memory retrieval. Single-nuclei RNA-sequencing of these ensembles demonstrates predominant recruitment of D1 medium spiny neurons and identifies transcriptional properties that are selective to cocaine-recruited NAc neurons and could explain distinct excitability features. These findings fundamentally advance our understanding of how cocaine drives pathological memory formation during repeated exposures.

9.
Neuron ; 110(7): 1116-1138, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182484

RESUMO

Stress disorders are leading causes of disease burden in the U.S. and worldwide, yet available therapies are fully effective in less than half of all individuals with these disorders. Although to date, much of the focus has been on neuron-intrinsic mechanisms, emerging evidence suggests that chronic stress can affect a wide range of cell types in the brain and periphery, which are linked to maladaptive behavioral outcomes. Here, we synthesize emerging literature and discuss mechanisms of how non-neuronal cells in limbic regions of brain interface at synapses, the neurovascular unit, and other sites of intercellular communication to mediate the deleterious, or adaptive (i.e., pro-resilient), effects of chronic stress in rodent models and in human stress-related disorders. We believe that such an approach may one day allow us to adopt a holistic "whole body" approach to stress disorder research, which could lead to more precise diagnostic tests and personalized treatment strategies. Stress is a major risk factor for many psychiatric disorders. Cathomas et al. review new insight into how non-neuronal cells mediate the deleterious effects, as well as the adaptive, protective effects, of stress in rodent models and human stress-related disorders.


Assuntos
Transtornos Mentais , Neurônios , Encéfalo , Humanos
10.
Sci Adv ; 8(42): eadd5579, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260683

RESUMO

Regret describes recognizing alternative actions could have led to better outcomes. It remains unclear whether regret derives from generalized mistake appraisal or instead comprises dissociable, action-specific processes. Using a neuroeconomic task, we found that mice were sensitive to fundamentally distinct types of regret following exposure to chronic social defeat stress or manipulations of CREB, a transcription factor implicated in stress action. Bias to make compensatory decisions after rejecting high-value offers (regret type I) was unique to stress-susceptible mice. Bias following the converse operation, accepting low-value offers (regret type II), was enhanced in stress-resilient mice and absent in stress-susceptible mice. CREB function in either the prefrontal cortex or nucleus accumbens was required to suppress regret type I but bidirectionally regulated regret type II. We provide insight into how maladaptive stress response traits relate to distinct forms of counterfactual thinking, which could steer therapy for mood disorders, such as depression, toward circuit-specific computations through a careful description of decision narrative.

11.
Curr Protoc Neurosci ; 88(1): e71, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216394

RESUMO

Interest in evaluating individual cellular populations in the central nervous system has prompted the development of several techniques enabling the enrichment of single-cell populations. Herein we detail a relatively inexpensive method to specifically isolate neurons, astrocytes, and microglia from a mixed homogenate utilizing magnetic beads conjugated to cell-type specific antibodies. We have used this technique to isolate astrocytes across development and into late adulthood. Finally, we detail the utilization of this technique in novel astrocyte and astrocyte/neuron co-culture paradigms. © 2019 by John Wiley & Sons, Inc.


Assuntos
Astrócitos , Encéfalo/citologia , Separação Celular/métodos , Fenômenos Magnéticos , Microglia , Neurônios , Animais , Astrócitos/fisiologia , Encéfalo/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Neurônios/fisiologia
12.
Elife ; 82019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433295

RESUMO

Brain-derived neurotrophic factor (BDNF) is a critical growth factor involved in the maturation of the CNS, including neuronal morphology and synapse refinement. Herein, we demonstrate astrocytes express high levels of BDNF's receptor, TrkB (in the top 20 of protein-coding transcripts), with nearly exclusive expression of the truncated isoform, TrkB.T1, which peaks in expression during astrocyte morphological maturation. Using a novel culture paradigm, we show that astrocyte morphological complexity is increased in the presence of BDNF and is dependent upon BDNF/TrkB.T1 signaling. Deletion of TrkB.T1, globally and astrocyte-specifically, in mice revealed morphologically immature astrocytes with significantly reduced volume, as well as dysregulated expression of perisynaptic genes associated with mature astrocyte function. Indicating a role for functional astrocyte maturation via BDNF/TrkB.T1 signaling, TrkB.T1 KO astrocytes do not support normal excitatory synaptogenesis or function. These data suggest a significant role for BDNF/TrkB.T1 signaling in astrocyte morphological maturation, a critical process for CNS development.


Assuntos
Astrócitos/citologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Glicoproteínas de Membrana/metabolismo , Morfogênese , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Quinases/deficiência
13.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464197

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder usually caused by mutations in methyl-CpG-binding protein 2 (MeCP2). RTT is typified by apparently normal development until 6-18 mo of age, when motor and communicative skills regress and hand stereotypies, autonomic symptoms, and seizures present. Restoration of MeCP2 function selectively to astrocytes reversed several deficits in a murine model of RTT, but the mechanism of this rescue is unknown. Astrocytes carry out many essential functions required for normal brain functioning, including extracellular K+ buffering. Kir4.1, an inwardly rectifying K+ channel, is largely responsible for the channel-mediated K+ regulation by astrocytes. Loss-of-function mutations in Kir4.1 in human patients result in a severe neurodevelopmental disorder termed EAST or SESAME syndrome. Here, we evaluated astrocytic Kir4.1 expression in a murine model of Rett syndrome. We demonstrate by chromatin immunoprecipitation analysis that Kir4.1 is a direct molecular target of MeCP2. Astrocytes from Mecp2-deficient mice express significantly less Kir4.1 mRNA and protein, which translates into a >50% deficiency in Ba2+-sensitive Kir4.1-mediated currents, and impaired extracellular potassium dynamics. By examining astrocytes in isolation, we demonstrate that loss of Kir4.1 is cell autonomous. Assessment through postnatal development revealed that Kir4.1 expression in Mecp2-deficient animals never reaches adult, wild-type levels, consistent with a neurodevelopmental disorder. These are the first data implicating a direct MeCP2 molecular target in astrocytes and provide novel mechanistic insight explaining a potential mechanism by which astrocytic dysfunction may contribute to RTT.


Assuntos
Astrócitos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Síndrome de Rett/genética , Animais , Regulação da Expressão Gênica , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Transgênicos , Síndrome de Rett/metabolismo
14.
Mol Autism ; 8: 56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29090078

RESUMO

BACKGROUND: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS: We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS: Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS: This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.


Assuntos
Córtex Cerebral/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteoma/metabolismo , Proteômica , RNA/metabolismo , Síndrome de Rett/genética , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Proteoma/análise , RNA/química , RNA/isolamento & purificação , Síndrome de Rett/patologia , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA