Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(6): 878-891, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618831

RESUMO

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.


Assuntos
Astrócitos , Produtos Biológicos , Animais , Encéfalo , Humanos , Interleucina-2/genética , Interleucinas , Camundongos , Doenças Neuroinflamatórias , Linfócitos T Reguladores
2.
Cell ; 167(6): 1525-1539.e17, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912060

RESUMO

Poorly immunogenic tumor cells evade host immunity and grow even in the presence of an intact immune system, but the complex mechanisms regulating tumor immunogenicity have not been elucidated. Here, we discovered an unexpected role of the Hippo pathway in suppressing anti-tumor immunity. We demonstrate that, in three different murine syngeneic tumor models (B16, SCC7, and 4T1), loss of the Hippo pathway kinases LATS1/2 (large tumor suppressor 1 and 2) in tumor cells inhibits tumor growth. Tumor regression by LATS1/2 deletion requires adaptive immune responses, and LATS1/2 deficiency enhances tumor vaccine efficacy. Mechanistically, LATS1/2-null tumor cells secrete nucleic-acid-rich extracellular vesicles, which induce a type I interferon response via the Toll-like receptors-MYD88/TRIF pathway. LATS1/2 deletion in tumors thus improves tumor immunogenicity, leading to tumor destruction by enhancing anti-tumor immune responses. Our observations uncover a key role of the Hippo pathway in modulating tumor immunogenicity and demonstrate a proof of concept for targeting LATS1/2 in cancer immunotherapy.


Assuntos
Tolerância Imunológica , Neoplasias/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Vacinas Anticâncer/imunologia , Deleção de Genes , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Annu Rev Biochem ; 84: 265-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784050

RESUMO

Histone proteins are subject to a host of posttranslational modifications (PTMs) that modulate chromatin structure and function. Such control is achieved by the direct alteration of the intrinsic physical properties of the chromatin fiber or by regulating the recruitment and activity of a host of trans-acting nuclear factors. The sheer number of histone PTMs presents a formidable barrier to understanding the molecular mechanisms at the heart of epigenetic regulation of eukaryotic genomes. One aspect of this multifarious problem, namely how to access homogeneously modified chromatin for biochemical studies, is well suited to the sensibilities of the organic chemist. Indeed, recent years have witnessed a critical role for synthetic protein chemistry methods in generating the raw materials needed for studying how histone PTMs regulate chromatin biochemistry. This review focuses on what is arguably the most powerful, and widely employed, of these chemical strategies, namely histone semisynthesis via the chemical ligation of peptide fragments.


Assuntos
Cromatina/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
4.
Blood ; 143(12): 1157-1166, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38142401

RESUMO

ABSTRACT: Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic disorder that occurs on a background of bone marrow failure (BMF). In PNH, chronic intravascular hemolysis causes an increase in morbidity and mortality, mainly because of thromboses. Over the last 20 years, treatment of PNH has focused on the complement protein C5 to prevent intravascular hemolysis using the monoclonal antibody eculizumab and more recently ravulizumab. In the United Kingdom, all patients are under review at 1 of 2 reference centers. We report on all 509 UK patients with PNH treated with eculizumab and/or ravulizumab between May 2002 and July 2022. The survival of patients with eculizumab and ravulizumab was significantly lower than that of age- and sex-matched controls (P = .001). Only 4 patients died of thromboses. The survival of patients with PNH (n = 389), when those requiring treatment for BMF (clonal evolution to myelodysplastic syndrome or acute leukemia or had progressive unresponsive aplastic anemia) were excluded, was not significantly different from that of age- and sex-matched controls (P = .12). There were 11 cases of meningococcal sepsis (0.35 events per 100 patient-years). Extravascular hemolysis was evident in patients who received treatment, with 26.7% of patients requiring transfusions in the most recent 12 months on therapy. Eculizumab and ravulizumab are safe and effective therapies that reduce mortality and morbidity in PNH, but further work is needed to reduce mortality in those with concomitant BMF.


Assuntos
Hemoglobinúria Paroxística , Trombose , Humanos , Hemoglobinúria Paroxística/complicações , Hemólise , Inativadores do Complemento , Resultado do Tratamento , Complemento C5 , Trombose/complicações , Transtornos da Insuficiência da Medula Óssea
5.
Clin Proteomics ; 21(1): 3, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225548

RESUMO

Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169.

6.
Epilepsia ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888867

RESUMO

Epilepsy is a complex chronic brain disorder with diverse clinical features that can be caused by various triggering events, such as infections, head trauma, or stroke. During epileptogenesis, various abnormalities are observed, such as altered cellular homeostasis, imbalance of neurotransmitters, tissue changes, and the release of inflammatory mediators, which in combination lead to spontaneous recurrent seizures. Regulatory T cells (Tregs), a subtype of CD4+Foxp3+ T cells, best known for their key function in immune suppression, also seem to play a role in attenuating neurodegeneration and suppressing pathological inflammation in several brain disease states. Considering that epilepsy is also highly associated with neuronal damage and neuroinflammation, modulation of Tregs may be an interesting way to modify the disease course of epilepsy and needs further investigation. In this review, we will describe the currently available information on Tregs in epilepsy.

7.
Neurosurg Rev ; 47(1): 264, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856823

RESUMO

OBJECTIVE: This international survey investigated Evidence-Based Medicine (EBM) in spine surgery by measuring its acceptance among spine surgeons. It assessed their understanding of EBM and how they apply it in practice by analyzing responses to various clinical scenarios.. MATERIALS AND METHODS: Following the CHERRIES guidelines, an e-survey was distributed to multiple social media forums for neurosurgeons and orthopedic surgeons on Facebook, LinkedIn, and Telegram and circulated further through email via the authors' network. Three hundred participants from Africa, Asia, Europe, North America, and Oceania completed the survey. RESULTS: Our study revealed that 67.7% (n = 203) of respondents used EBM in their practice, and 97.3% (n = 292) believed training in research methodology and EBM was necessary for the practice of spine surgery. Despite this endorsement of using EBM in spine surgery, we observed varied responses to how EBM is applied in practice based on example scenarios. The responders who had additional training tended to obey EBM guidelines more than those who had no additional training. Most surgeons responded as always or sometimes prescribing methylprednisolone to patients with acute spinal cord injury. Other significant differences were identified between geographical regions, training, practice settings, and other factors. CONCLUSIONS: Most respondents used EBM in practice and believed training in research methodology and EBM is necessary for spine surgery; however, there were significant variations on how to use them per case. Thus, the appropriate application of EBM in clinical settings for spinal surgery must be further studied.


Assuntos
Medicina Baseada em Evidências , Coluna Vertebral , Humanos , Inquéritos e Questionários , Coluna Vertebral/cirurgia , Neurocirurgiões , Procedimentos Neurocirúrgicos , Masculino , Feminino
8.
Glia ; 71(7): 1667-1682, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36949723

RESUMO

Astrocytes are integral components of brain circuits, where they sense, process, and respond to surrounding activity, maintaining homeostasis and regulating synaptic transmission, the sum of which results in behavior modulation. These interactions are possible due to their complex morphology, composed of a tree-like structure of processes to cover defined territories ramifying in a mesh-like system of fine leaflets unresolved by conventional optic microscopy. While recent reports devoted more attention to leaflets and their dynamic interactions with synapses, our knowledge about the tree-like "backbone" structure in physiological conditions is incomplete. Recent transcriptomic studies described astrocyte molecular diversity, suggesting structural heterogeneity in regions such as the hippocampus, which is crucial for cognitive and emotional behaviors. In this study, we carried out the structural analysis of astrocytes across the hippocampal subfields of Cornu Ammonis area 1 (CA1) and dentate gyrus in the dorsoventral axis. We found that astrocytes display heterogeneity across the hippocampal subfields, which is conserved along the dorsoventral axis. We further found that astrocytes appear to contribute in an exocytosis-dependent manner to a signaling loop that maintains the backbone structure. These findings reveal astrocyte heterogeneity in the hippocampus, which appears to follow layer-specific cues and depend on the neuro-glial environment.


Assuntos
Astrócitos , Hipocampo , Animais , Camundongos , Astrócitos/fisiologia , Região CA1 Hipocampal , Neuroglia , Transmissão Sináptica
9.
Arch Toxicol ; 96(5): 1141-1212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278105

RESUMO

Systemic exposure to nanoparticles (NPs) adversely affects different organs, including the nervous system. We systematically extracted data from publication on PubMed and Embase database up to the year 2020, and analyzed in vitro and in vivo neurotoxicity of 4 of the most well studied NPs (silver NPs, carbon-based NPs, iron NPs and silica NPs). A relatively good correlation was observed between in vitro and in vivo effects, including genotoxicity, oxidative stress, apoptosis and pro-inflammatory effects. However, crucial knowledge gap exists in current understanding of the underlying mechanisms. Some of the critical knowledge gaps and research needs identified in relation to neurotoxicity of nanoparticles include (1) lack of physio-chemical characteristics of NPs used, (2) cellular/tissue uptake of NP, (3) NP translocation across the blood-brain barrier (BBB), (4) Effect of exposure routes.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Síndromes Neurotóxicas , Barreira Hematoencefálica , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo , Dióxido de Silício
10.
J Biol Chem ; 295(32): 10901-10910, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32503840

RESUMO

Most characterized protein methylation events encompass arginine and lysine N-methylation, and only a few cases of protein methionine thiomethylation have been reported. Newly discovered oncohistone mutations include lysine-to-methionine substitutions at positions 27 and 36 of histone H3.3. In these instances, the methionine substitution localizes to the active-site pocket of the corresponding histone lysine methyltransferase, thereby inhibiting the respective transmethylation activity. SET domain-containing 3 (SETD3) is a protein (i.e. actin) histidine methyltransferase. Here, we generated an actin variant in which the histidine target of SETD3 was substituted with methionine. As for previously characterized histone SET domain proteins, the methionine substitution substantially (76-fold) increased binding affinity for SETD3 and inhibited SETD3 activity on histidine. Unexpectedly, SETD3 was active on the substituted methionine, generating S-methylmethionine in the context of actin peptide. The ternary structure of SETD3 in complex with the methionine-containing actin peptide at 1.9 Å resolution revealed that the hydrophobic thioether side chain is packed by the aromatic rings of Tyr312 and Trp273, as well as the hydrocarbon side chain of Ile310 Our results suggest that placing methionine properly in the active site-within close proximity to and in line with the incoming methyl group of SAM-would allow some SET domain proteins to selectively methylate methionine in proteins.


Assuntos
Histona Metiltransferases/metabolismo , Metionina/metabolismo , Histona Metiltransferases/química , Humanos , Metilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
11.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817218

RESUMO

Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode Caenorhabditis elegans, encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein. Free δ has previously been demonstrated to facilitate viral exit following intracellular expression; however, the biological significance and prevalence of CP-δ remained relatively unknown. Here, we demonstrate that Orsay CP-δ is covalently incorporated into infectious particles, the first example of any attached viral fibers known to date. The crystal structure of δ(1-101) (a deletion mutant containing the first 101 amino acid [aa] residues of δ) reveals a pentameric, 145-Å long fiber with an N-terminal coiled coil followed by multiple ß-bracelet repeats. Electron micrographs of infectious virions depict particle-associated CP-δ fibers with dimensions similar to free δ. The δ proteins from two other nematode viruses, Le Blanc and Santeuil, which both specifically infect Caenorhabditis briggsae, were also found to form fibrous molecules. Recombinant Le Blanc δ was able to block Orsay virus infection in worm culture and vice versa, suggesting these two viruses likely compete for the same cell receptor(s). Thus, we propose that while CP-δ likely mediates host cell attachment for all three nematode viruses, additional downstream factor(s) ultimately determine the host specificity and range of each virus.IMPORTANCE Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term ß-bracelets, in the intermediate shaft region. Based on sequence analysis, the ß-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted ß-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability.


Assuntos
Proteínas do Capsídeo/química , Nodaviridae/ultraestrutura , Poliproteínas/química , Escleroproteínas/química , Proteínas Virais/química , Vírion/ultraestrutura , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Especificidade de Hospedeiro , Modelos Moleculares , Nodaviridae/genética , Nodaviridae/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escleroproteínas/genética , Escleroproteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
12.
Agric Econ ; 52(3): 441-458, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34149130

RESUMO

Coronavirus 2019 (COVID-19) has caused ongoing disruptions to U.S. meat markets via demand and supply-side shocks. Abnormally high prices have been reported at retail outlets and meat packers have been accused of unfair business practices because of widening price spreads. Processing facilities have experienced COVID-19 outbreaks resulting in shutdowns. Using weekly data on wholesale and retail prices of beef, pork, and poultry, we characterize the time series behavior and dynamic linkages of U.S. meat prices before the COVID-19 pandemic. We model vertical price transmission using both linear and threshold autoregressive (AR) models and vector error correction (VEC) models. With the estimated models, we then compare price movements under COVID-19 to model predictions. All three meat markets are well-integrated and we observe unexpected, large price movements in April and May of 2020. Early COVID-19 related shocks appear to be transitory with prices returning to expected levels at a pace consistent with the speed of transmission prior to the pandemic. This well-functioning market process suggests a degree of resilience in U.S. meat supply chains.

13.
Glia ; 68(10): 2102-2118, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32237182

RESUMO

Astrocytes are vital for preserving correct brain functioning by continuously sustaining neuronal activity and survival. They are in contact with multiple synapses at once allowing the expansion of local synaptic events into activity changes in neuronal networks. Furthermore, cortical astrocytes integrate local sensory inputs and behavioral state. From an anatomical, molecular, and functional perspective, astrocytes are thus ideal candidates to influence complex large-scale brain mechanisms such as plasticity. We collected evidence for the astrocytic potential for plasticity modulation, using the monocular enucleation (ME) mouse model of visual cortex plasticity. The impact of one-eyed vision involves the functional recruitment of the deprived visual cortex by the spared senses within a 7-week time frame, reflecting a substantial change in sensory information processing. In visually deprived cortex, a swift upregulation in Aldh1l1-positive astrocyte density lasts until maximal functional recovery is reached. Transient metabolic silencing of visual cortex astrocytes at the time of ME induction, through intracranial fluorocitrate injections, reveals that astrocytes are required on site to achieve adequate long-term neuronal reactivation. In addition, chronic stimulation by Gi but not Gq G-protein coupled receptor activation of local astrocytes boosts the cortical plasticity phenomenon. Hence, functional manipulation of protoplasmic astrocytes has long-lasting effects on the functional recovery of cortical neurons upon sensory loss, possibly by influencing the neuronal threshold to reactivate. Together, our results highlight an integral role for astrocytes in mediating adult cortical plasticity and unmask astrocyte specific Gi signaling as an interesting therapeutic pathway for brain plasticity regulation.


Assuntos
Astrócitos/fisiologia , Cegueira/fisiopatologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Privação Sensorial/fisiologia , Córtex Visual/fisiologia , Animais , Cegueira/patologia , Camundongos , Camundongos Endogâmicos C57BL , Visão Monocular/fisiologia , Córtex Visual/citologia
14.
Clin Anat ; 33(4): 610-618, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31503350

RESUMO

The aims of this study were to (1) describe the three-dimensional characteristics and sources of anatomical variability in the geometry of the intercondylar fossa ("notch") in an anterior cruciate ligament (ACL)-injured sample and (2) assess the relationship between patient factors and anatomical variability of the fossa in the context of impingement risk. A retrospective analysis of preoperative magnetic resonance imaging (MRI) for 49 patients with ACL rupture was performed. Scans were examined in the axial plane using an online picture archiving and communication system (PACS) viewer and fossa width and angle assessed at multiple slices, as well as anteroposterior depth, fossa height, and calculated total volume. Principal component analysis was performed to prioritize the sources of variability. A multivariate linear regression was performed to assess relationships between different patient factors, controlling for imaging parameters and principal component loadings. Geometric properties were normally distributed for all but fossa volume, height, and distal angle. Three principal components (PCs) were identified explaining 80% of total variance, shape (PC1), size in the coronal plane (PC2), and size in the sagittal plane (PC3). Patient factors were significantly (P < 0.05) related to PC loadings; however, a substantial amount of variance in each model remained unexplained. Intercondylar fossa characteristics vary considerably within ACL-injury patients with shape and size in coronal and axial planes, explaining most of the variance. Although patient factors are associated with anatomical characteristics, further work is required to identify the correct combination of factors accurately predicting geometry of the fossa for planning ACL reconstruction. Clin. Anat. 33:610-618, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Variação Anatômica , Lesões do Ligamento Cruzado Anterior , Fêmur/anatomia & histologia , Fêmur/diagnóstico por imagem , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos
15.
PLoS Pathog ; 13(2): e1006231, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28241071

RESUMO

Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown. Using a combination of electron microscopy, X-ray crystallography, computational and biophysical analyses, here we show that the Orsay δ protein forms a ~420-Å long, pentameric fiber with an N-terminal α-helical bundle, a ß-stranded filament in the middle, and a C-terminal head domain. The pentameric nature of the δ fiber has been independently confirmed by both mass spectrometry and analytical ultracentrifugation. Recombinant Orsay capsid containing CP-δ shows protruding long fibers with globular heads at the distal end. Mutant viruses with disrupted CP-δ fibers were generated by organism-based reverse genetics. These viruses were found to be either non-viable or with poor infectivity according to phenotypic and qRT-PCR analyses. Furthermore, addition of purified δ proteins to worm culture greatly reduced Orsay infectivity in a sequence-specific manner. Based on the structure resemblance between the Orsay CP-δ fiber and the fibers from reovirus and adenovirus, we propose that CP-δ functions as a cell attachment protein to mediate Orsay entry into worm intestine cells.


Assuntos
Caenorhabditis elegans/virologia , Proteínas do Capsídeo/ultraestrutura , Vírus de RNA/fisiologia , Internalização do Vírus , Animais , Proteínas do Capsídeo/química , Dicroísmo Circular , Cristalografia por Raios X , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Organismos Geneticamente Modificados , Infecções por Vírus de RNA , Vírus de RNA/ultraestrutura , Vírion/química , Vírion/ultraestrutura
16.
Blood ; 129(21): 2939-2949, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28400375

RESUMO

Interaction between the chemokine receptor CXCR4 and its chief ligand CXCL12 plays a critical role in the retention and migration of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) microenvironment. In this study, qualitative and quantitative effects of long-term pharmacologic inhibition of the CXCR4/CXCL12 axis on the HSPC compartment were investigated by using 3 structurally unrelated small molecule CXCR4 antagonists. A >10-fold increase in mobilization efficiency was achieved by administering the antagonists as a subcutaneous continuous infusion for 2 weeks compared to a single bolus injection. A concurrent increase in self-renewing proliferation leading to a twofold to fourfold expansion of the HSPC pool in the BM was observed. The expanded BM showed a distinct repopulating advantage when tested in serial competitive transplantation experiments. Furthermore, major changes within the HSPC niche associated with previously described HSPC expansion strategies were not detected in bones treated with a CXCR4 antagonist infusion. Our data suggest that prolonged but reversible pharmacologic blockade of the CXCR4/CXCL12 axis represents an approach that releases HSPC with efficiency superior to any other known mobilization strategy and may also serve as an effective method to expand the BM HSPC pool.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Receptores CXCR4/antagonistas & inibidores , Nicho de Células-Tronco/efeitos dos fármacos , Animais , Medula Óssea/metabolismo , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Camundongos , Camundongos Transgênicos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
18.
Proteomics ; 18(11): e1700442, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29667342

RESUMO

Post-translational modifications (PTMs) of histones are important epigenetic regulatory mechanisms that are often dysregulated in cancer. We employ middle-down proteomics to investigate the PTMs and proteoforms of histone H4 during cell cycle progression. We use pH gradient weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) for on-line liquid chromatography-mass spectrometry analysis to separate and analyze the proteoforms of histone H4. This procedure provides enhanced separation of proteoforms, including positional isomers, and simplifies downstream data analysis. We use ultrahigh mass accuracy and resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to unambiguously distinguish between acetylation and tri-methylation (∆m = 0.036 Da). In total, we identify and quantify 233 proteoforms of histone H4 in two breast cancer cell lines. We observe significant increases in S1 phosphorylation during mitosis, implicating an important role in mitotic chromatin condensation. A decrease of K20 unmodified proteoforms is observed as the cell cycle progresses, corresponding to an increase of K20 mono- and di-methylation. Acetylation at K5, K8, K12, and K16 declines as cells traverse from S phase to mitosis, suggesting cell cycle-dependence and an important role during chromatin replication and condensation. These new insights into the epigenetics of the cell cycle may provide new diagnostic and prognostic biomarkers.


Assuntos
Neoplasias da Mama/metabolismo , Ciclo Celular , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Acetilação , Neoplasias da Mama/patologia , Cromatina/metabolismo , Epigênese Genética , Feminino , Humanos , Metilação , Fosforilação , Isoformas de Proteínas , Células Tumorais Cultivadas
19.
J Biol Chem ; 292(21): 8874-8891, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28373281

RESUMO

Astrocytes are a major cell type in the mammalian CNS. Astrocytes are now known to play a number of essential roles in processes including synapse formation and function, as well as blood-brain barrier formation and control of cerebral blood flow. However, our understanding of the molecular mechanisms underlying astrocyte development and function is still rudimentary. This lack of knowledge is at least partly due to the lack of tools currently available for astrocyte biology. ACSA-2 is a commercially available antibody originally developed for the isolation of astrocytes from young postnatal mouse brain, using magnetic cell-sorting methods, but its utility in isolating cells from adult tissue has not yet been published. Using a modified protocol, we now show that this tool can also be used to isolate ultrapure astrocytes from the adult brain. Furthermore, using a variety of techniques (including single-cell sequencing, overexpression and knockdown assays, immunoblotting, and immunohistochemistry), we identify the ACSA-2 epitope for the first time as ATP1B2 and characterize its distribution in the CNS. Finally, we show that ATP1B2 is stably expressed in multiple models of CNS injury and disease. Hence, we show that the ACSA-2 antibody possesses the potential to be an extremely valuable tool for astrocyte research, allowing the purification and characterization of astrocytes (potentially including injury and disease models) without the need for any specialized and expensive equipment. In fact, our results suggest that ACSA-2 should be a first-choice method for astrocyte isolation and characterization.


Assuntos
Adenosina Trifosfatases , Anticorpos/química , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Cátions , Moléculas de Adesão Celular Neuronais , Epitopos , Regulação da Expressão Gênica , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/química , Animais , Astrócitos/patologia , Encéfalo/patologia , Lesões Encefálicas/patologia , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/química , Moléculas de Adesão Celular Neuronais/biossíntese , Moléculas de Adesão Celular Neuronais/química , Modelos Animais de Doenças , Epitopos/biossíntese , Epitopos/química , Feminino , Masculino , Camundongos
20.
Gene Ther ; 25(2): 83-92, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29523880

RESUMO

Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Neurônios/metabolismo , Transdução Genética , Animais , Encéfalo/citologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Sinapsinas/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA