Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Langmuir ; 39(9): 3286-3300, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36821411

RESUMO

Background: A membrane protein interaction with lipids shows distinct specificity in terms of the sterol structure. The structure of the sterol's polar headgroup, steroidal rings, and aliphatic side chains have all been shown to influence protein membrane interactions, including the initial binding and subsequent oligomerization to form functional channels. Previous studies have provided some insights into the regulatory role that cholesterol plays in the spontaneous membrane insertion of the chloride intracellular ion channel protein, CLIC1. However, the manner in which cholesterol interacts with CLIC1 is yet largely unknown. Method: In this study, the CLIC1 interaction with different lipid:sterol monolayers was studied using the Langmuir trough and neutron reflectometry in order to investigate the structural features of cholesterol essential for the spontaneous membrane insertion of the CLIC1 protein. Molecular docking simulations were also performed to study the binding affinities between CLIC1 and the different sterol molecules. Results: This study, for the first time, highlights the vital role of the free sterol 3ß-OH group as an essential structural requirement for the interaction of CLIC1 with cholesterol. Furthermore, the presence of additional hydroxyl groups, methylation of the sterol skeleton, and the structure of the sterol alkyl side chain have also been shown to modulate the magnitude of CLIC1 interaction with sterols and hence their spontaneous membrane insertion. This study also reports the ability of CLIC1 to interact with other naturally existing sterol molecules. General Significance: Like the sterol molecules, CLIC proteins are evolutionarily conserved with almost all vertebrates expressing six CLIC proteins (CLIC1-6), and CLIC-like proteins are also present in invertebrates and have also been reported in plants. This discovery of CLIC1 protein interaction with other natural sterols and the sterol structural requirements for CLIC membrane insertion provide key information to explore the feasibility of exploiting these properties for therapeutic and prophylactic purposes.


Assuntos
Membranas Artificiais , Esteróis , Animais , Simulação de Acoplamento Molecular , Modelos Moleculares , Colesterol/metabolismo
2.
Phys Chem Chem Phys ; 24(2): 797-806, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927644

RESUMO

The spontaneous adsorption of graphene oxide (GO) sheets at the air-water interface is explored using X-ray reflectivity (XRR) measurements. As a pure aqueous dispersion, GO sheets do not spontaneously adsorb at the air-water interface due to their high negative surface potential (-60 mV) and hydrophilic functionality. However, when incorporated with surfactant molecules at optimal ratios and loadings, GO sheets can spontaneously be driven to the surface. It is hypothesised that surfactant molecules experience favourable attractive interactions with the surfaces of GO sheets, resulting in co-assembly that serves to render the sheets surface active. The GO/surfactant composites then collectively adsorb at the air-water interface, with XRR analysis suggesting an interfacial structure comprising surfactant tailgroups in air and GO/surfactant headgroups in water for a combined thickness of 30-40 Å, depending on the surfactant used. Addition of too much surfactant appears to inhibit GO surface adsorption by saturating the interface, and low loadings of GO/surfactant composites (even at optimal ratios) do not show significant adsorption indicating a partitioning effect. Lastly, surfactant chemistry is also a key factor dictating adsorption capacity of GO. The zwitterionic surfactant oleyl amidopropyl betaine causes marked increases in GO surface activity even at very low concentrations (≤0.2 mM), whereas non-ionic surfactants such as Triton X-100 and hexaethyleneglycol monododecyl ether require higher concentrations (ca. 1 mM) in order to impart spontaneous adsorption of the sheets. Anionic surfactants do not enhance GO surface activity presumably due to like-charge repulsions that prevent co-assembly. This work provides useful insight into the synergy between GO sheets and molecular amphiphiles in aqueous systems for enhancing the surface activity of GO, and can be used to inform system formulation for developing water-friendly, surface active composites based around atomically thin materials.

3.
Langmuir ; 37(32): 9735-9743, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34347499

RESUMO

Antibiotic resistance will be one of the most prominent challenges to health-care systems in the coming decades, with the OECD predicting that up to 2.4 million deaths will be caused between 2015 and 2050 by drug-resistant bacterial infections in first-world countries alone, with infections costing health-care systems billions of dollars each year. Developing new methods to increase bacterial susceptibility toward drugs is an important step in treating resistant infections. Here, the synergistic effects of gold nanoparticles and the antibiotic drug colistin sulfate have been examined. A tethered lipid bilayer membrane was used to mimic a Gram-negative bacterial cell membrane. Exposing the membrane to gold nanoparticles prior to adding the antibiotic significantly increased the effect of the antibiotic on the membrane. Cationic gold nanoparticles could thus be used to enhance bacterial susceptibility to antibiotics, leading to a more potent treatment.


Assuntos
Ouro , Nanopartículas Metálicas , Antibacterianos/farmacologia , Colistina , Bactérias Gram-Negativas , Humanos , Testes de Sensibilidade Microbiana
4.
Langmuir ; 37(4): 1337-1352, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33478220

RESUMO

Previous studies have demonstrated the potential for non-steroidal anti-inflammatory drugs (NSAIDs), in particular aspirin, to be used as chemopreventives for colorectal cancer; however, a range of unwanted gastrointestinal side effects limit their effectiveness. Due to the role of bismuth in the treatment of gastrointestinal disorders, it is hypothesized that bismuth-coordinated NSAIDs (BiNSAIDs) could be used to combat the gastrointestinal side effects of NSAIDs while still maintaining their chemopreventive potential. To further understand the biological activity of these compounds, the present study examined four NSAIDs, namely, tolfenamic acid (tolfH), aspirin (aspH), indomethacin (indoH), and mefenamic acid (mefH) and their analogous homoleptic BiNSAIDs ([Bi(L)3]n), to determine how these compounds interact with biological membrane mimics composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and cholesterol. Electrical impedance spectroscopy studies revealed that each of the NSAIDs and BiNSAIDs influenced membrane conductance, suggesting that temporary pore formation may play a key role in the previously observed cytotoxicity of tolfH and Bi(tolf)3. Quartz crystal microbalance with dissipation monitoring showed that all the compounds were able to interact with membrane mimics composed of solely POPC or POPC/cholesterol. Finally, neutron reflectometry studies showed changes in membrane thickness and composition. The location of the compounds within the bilayer could not be determined with certainty; however, a complex interplay of interactions governs the location of small molecules, such as NSAIDs, within lipid membranes. The charged nature of the parent NSAIDs means that interactions with the polar headgroup region are most likely with larger hydrophobic sections, potentially leading to deeper penetration.


Assuntos
Bicamadas Lipídicas , Preparações Farmacêuticas , Anti-Inflamatórios não Esteroides/toxicidade , Bismuto/toxicidade , Concentração de Íons de Hidrogênio , Fosfatidilcolinas
5.
Langmuir ; 34(31): 9141-9152, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29999320

RESUMO

The interfacial structures of a range of amphiphilic molecules are studied with both "soft" and "hard" hydrophobic substrates. Neutron reflection and quartz crystal microbalance with dissipation measurements highlight the differences between the adsorbed structures adopted by sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (C16TAB), and the "AM1" surface active peptide. At the soft siloxane/water interface, small molecular surfactants form loosely packed layers, with the hydrophobic tails penetrating into the oily layer, and an area per surfactant molecule that is significantly less than previously reported for the air/water interface. Neutron reflection measurements, supported by quartz crystal microbalance studies, indicate that for C16TAB, approximately 30 ± 8% of the alkyl tail penetrates into the poly(dimethylsiloxane) (PDMS) layer, whereas 20 ± 5% of the alkyl tail of SDS is located in the PDMS. For the engineered peptide surfactant AM1 (21 residues), it was found that one face of the α helix penetrated into the PDMS film. In contrast, penetration of the surfactant tails was not observed against hard solidlike hydrophobic surfaces made from octadecyltrichlorosilane (OTS) for any of the molecular species studied. At the OTS/water interface, C16TAB and SDS were seen to adsorb as larger aggregates and not as monolayers. Amphiphilic adsorption (amount, structural conformation) at the PDMS/water interface is shown to be different from that at both the air/water interface and the hard OTS/water interface, illustrating that interfacial structures cannot be predicted by the surfactant packing parameter alone. The bound PDMS layer is shown to be a useful proxy for the oil/water interface in surface and stabilization studies, with hydrophobic components of the molecules able to penetrate into the oily PDMS.

6.
Langmuir ; 34(30): 9036-9046, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29986585

RESUMO

Hanatoxin (HaTx) from spider venom works as an inhibitor of Kv2.1 channels, most likely by interacting with the voltage sensor (VS). However, the way in which this water-soluble peptide modifies the gating remains poorly understood as the VS is deeply embedded within the bilayer, although it would change its position depending on the membrane potential. To determine whether HaTx can indeed bind to the VS, the depth at which HaTx penetrates into the POPC membranes was measured with neutron reflectivity. Our results successfully demonstrate that HaTx penetrates into the membrane hydrocarbon core (∼9 Šfrom the membrane surface), not lying on the membrane-water interface as reported for another voltage sensor toxin (VSTx). This difference in penetration depth suggests that the two toxins fix the voltage sensors at different positions with respect to the membrane normal, thereby explaining their different inhibitory effects on the channels. In particular, results from MD simulations constrained by our penetration data clearly demonstrate an appropriate orientation for HaTx to interact with the membranes, which is in line with the biochemical information derived from stopped-flow analysis through delineation of the toxin-VS binding interface.

7.
Phys Chem Chem Phys ; 20(18): 12958-12969, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701745

RESUMO

A model membrane system has been developed, which mimics the outer membrane of Gram negative bacteria. The structure is based on a tethered monolayer which has been fused with vesicles containing lipopolysaccharide molecules. The effect of the composition of the monolayer and the lipids in the outer layer on the structural and electrical properties of the membrane has been investigated. By using electrochemical impedance spectroscopy as well as neutron scattering techniques, it could be shown that a relatively high tethering density and a small amount of diluting lipids in the outer membrane leaflet leads to the formation of a stable solid supported membrane. The influence of divalent ions on the membrane stability has been probed as well as the interaction of the bilayer with the antibiotic colistin. A number of different architectures were developed, suited to both the study of bacterial membrane proteins and the screening of antimicrobial activity of potential drug candidates.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Bicamadas Lipídicas/química , Colistina/química , Espectroscopia Dielétrica , Capacitância Elétrica , Escherichia coli , Lipopolissacarídeos/química , Difração de Nêutrons , Fosfatidilcolinas/química , Espalhamento a Baixo Ângulo , Propriedades de Superfície/efeitos dos fármacos
8.
Langmuir ; 33(18): 4444-4451, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28387116

RESUMO

Tethered bilayer lipid membranes are versatile solid-supported model membrane systems. Core to these systems is an anchorlipid that covalently links a lipid bilayer to a support. The molecular structure of these lipids can have a significant impact on the properties of the resulting bilayer. Here, the synthesis of anchorlipids containing ester groups in the tethering part is described. The lipids are used to form bilayer membranes, and the resulting structures are compared with membranes formed using conventional anchorlipids or sparsely tethered membranes. All membranes showed good electrical sealing properties; the disulphide-terminated anchorlipids could be used in a sparsely tethered system without significantly reducing the sealing properties of the lipid bilayers. The sparsely tethered systems also allowed for higher ion transport across the membrane, which is in good correlation with higher hydration of the spacer region as seen by neutron scattering.


Assuntos
Bicamadas Lipídicas , Estrutura Molecular
9.
Langmuir ; 33(43): 12497-12509, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29016141

RESUMO

CLIC1 belongs to the ubiquitous family of chloride intracellular ion channel proteins that are evolutionarily conserved across species. The CLICs are unusual in that they exist mainly as soluble proteins but possess the intriguing property of spontaneous conversion from the soluble to an integral membrane-bound form. This conversion is regulated by the membrane lipid composition, especially by cholesterol, together with external factors such as oxidation and pH. However, the precise physiological mechanism regulating CLIC1 membrane insertion is currently unknown. In this study, X-ray and neutron reflectivity experiments were performed to study the interaction of CLIC1 with different phospholipid monolayers prepared using POPC, POPE, or POPS with and without cholesterol in order to better understand the regulatory role of cholesterol in CLIC1 membrane insertion. Our findings demonstrate for the first time two different structural orientations of CLIC1 within phospholipid monolayers, dependent upon the absence or presence of cholesterol. In phospholipid monolayers devoid of cholesterol, CLIC1 was unable to insert into the lipid acyl chain region. However, in the presence of cholesterol, CLIC1 showed significant insertion within the phospholipid acyl chains occupying an area per protein molecule of 6-7 nm2 with a total CLIC1 thickness ranging from ∼50 to 56 Šacross the entire monolayer. Our data strongly suggests that cholesterol not only facilitates the initial docking or binding of CLIC1 to the membrane but also promotes deeper penetration of CLIC1 into the hydrophobic tails of the lipid monolayer.

10.
Langmuir ; 33(10): 2559-2570, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28215089

RESUMO

Lubricin (LUB) is a "mucin-like" glycoprotein found in synovial fluids and coating the cartilage surfaces of articular joints, which is now generally accepted as one of the body's primary boundary lubricants and antiadhesive agents. LUB's superior lubrication and antiadhesion are believed to derive from its unique interfacial properties by which LUB molecules adhere to surfaces (and biomolecules, such as hyaluronic acid and collagen) through discrete interactions localized to its two terminal end domains. These regionally specific interactions lead to self-assembly behavior and the formation of a well-ordered "telechelic" polymer brush structure on most substrates. Despite its importance to biological lubrication, detailed knowledge on the LUB's self-assembled brush structure is insufficient and derived mostly from indirect and circumstantial evidence. Neutron reflectometry (NR) was used to directly probe the self-assembled LUB layers, confirming the polymer brush architecture and resolving the degree of hydration and level of surface coverage. While attempting to improve the LUB contrast in the NR measurements, the LUB layers were exposed to a 20 mM solution of CaCl2, which resulted in a significant change in the polymer brush structural parameters consisting of a partial denaturation of the surface-binding end-domain regions, partial dehydration of the internal mucin-domain "loop", and collapse of the outer mucin-domain surface region. A series of atomic force microscopy measurements investigating the LUB layer surface morphology, mechanical properties, and adhesion forces in phosphate-buffered saline and CaCl2 solutions reveal that the structural changes induced by calcium ion interactions also significantly alter key properties, which may have implications to LUB's efficacy as a boundary lubricant and wear protector in the presence of elevated calcium ion concentrations.

11.
Biomacromolecules ; 18(8): 2439-2445, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28665589

RESUMO

Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose-liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (D2O) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2-3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid-solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 Å and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10-6 Å-2) and IgG (4.1 × 10-6 Å-2) in D2O, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.


Assuntos
Celulose/análogos & derivados , Imunoglobulina G/química , Membranas Artificiais , Animais , Celulose/química
12.
Soft Matter ; 13(43): 7953-7961, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29038804

RESUMO

The interfacial properties of nanoscale materials have profound influence on biodistribution and stability as well as the effectiveness of sophisticated surface-encoded properties such as active targeting to cell surface receptors. Tailorable nanocarrier emulsions (TNEs) are a novel class of oil-in-water emulsions stabilised by molecularly-engineered biosurfactants that permit single-pot stepwise surface modification with related polypeptides that may be chemically conjugated or genetically fused to biofunctional moieties. We have probed the structure and function of poly(ethylene glycol) (PEG) used to decorate TNEs in this way. The molecular weight of PEG decorating TNEs has considerable impact on the ζ-potential of the emulsion particles, related to differential interfacial thickness of the PEG layer as determined by X-ray reflectometry. By co-modifying TNEs with an antibody fragment, we show that the molecular weight and density of PEG governs the competing parameters of accessibility of the targeting moiety and of shielding the interface from non-specific interactions with the environment. The fundamental understanding of the molecular details of the PEG layer that we present provides valuable insights into the structure-function relationship for soft nanomaterial interfaces. This work therefore paves the way for further rational design of TNEs and other nanocarriers that must interact with their environment in controlled and predictable ways.

13.
Langmuir ; 32(14): 3485-94, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27003358

RESUMO

Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups.


Assuntos
Membrana Celular/química , Colicinas/química , Escherichia coli/química , Bicamadas Lipídicas/química , Lipopolissacarídeos/química , Oligossacarídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Escherichia coli/genética , Difração de Nêutrons , Ligação Proteica , Eletricidade Estática
14.
Langmuir ; 32(41): 10725-10734, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27668940

RESUMO

This study explains the importance of the phosphate moiety and H3O+ in controlling the ionic flux through phospholipid membranes. We show that despite an increase in the H3O+ concentration when the pH is decreased, the level of ionic conduction through phospholipid bilayers is reduced. By modifying the lipid structure, we show the dominant determinant of membrane conduction is the hydrogen bonding between the phosphate oxygens on adjacent phospholipids. The modulation of conduction with pH is proposed to arise from the varying H3O+ concentrations altering the molecular area per lipid and modifying the geometry of conductive defects already present in the membrane. Given the geometrical constraints that control the lipid phase structure of membranes, these area changes predict that organisms evolving in environments with different pHs will select for different phospholipid chain lengths, as is found for organisms near highly acidic volcanic vents (short chains) or in highly alkaline salt lakes (long chains). The stabilizing effect of the hydration shells around phosphate groups also accounts for the prevalence of phospholipids across biology. Measurement of ion permeation through lipid bilayers was made tractable using sparsely tethered bilayer lipid membranes with swept frequency electrical impedance spectroscopy and ramped dc amperometry. Additional evidence of the effect of a change in pH on lipid packing density is obtained from neutron reflectometry data of tethered membranes containing perdeuterated lipids.

15.
Biomed Microdevices ; 17(3): 9951, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860669

RESUMO

Integrating nanotechnology into useable devices requires a combination of bottom up and top down methodology. Often the techniques to measure and control these different components are entirely different, so methods that can analyse the nanoscale component in situ are of increasing importance. Here we describe a strategy that employs a self-assembling monolayer of engineered protein chimeras to display an array of oriented antibodies (IgG) on a microelectronic device for the label free detection of influenza nucleoprotein. The structural and functional properties of the bio-interface were characterised by a range of physical techniques including surface plasmon resonance, quartz-crystal microbalance and neutron reflectometry. This combination of methods reveals a 13.5 nm thick engineered-monolayer that (i) self-assembles on gold surfaces, (ii) captures IgG with high affinity in a defined orientation and (iii) specifically recognises the influenza A nucleoprotein. Furthermore we also show that this non-covalent self-assembled structure can render the dissociation of bound IgG irreversible by chemical crosslinking in situ without affecting the IgG function. The methods can thus describe in detail the transition from soluble engineered molecules with nanometre dimensions to an array that demonstrates the principles of a working influenza sensor.


Assuntos
Imunoensaio/instrumentação , Influenza Humana/metabolismo , Sistemas Microeletromecânicos/instrumentação , Engenharia de Proteínas/métodos , Proteínas de Ligação a RNA/análise , Ressonância de Plasmônio de Superfície/instrumentação , Proteínas do Core Viral/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem , Proteínas do Core Viral/química
16.
Langmuir ; 31(1): 404-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25489959

RESUMO

The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg(2+) and Ca(2+)) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca(2+) binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.


Assuntos
Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Bactérias Gram-Negativas/citologia , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Bactérias Gram-Negativas/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação
17.
Angew Chem Int Ed Engl ; 54(41): 11952-5, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26331292

RESUMO

Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir-Blodgett and Langmuir-Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Escherichia coli/química , Escherichia coli/citologia , Bicamadas Lipídicas/química , Fosfolipídeos/química , Antibacterianos/farmacologia , Descoberta de Drogas , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Membranas Artificiais , Modelos Moleculares
18.
J Biol Chem ; 287(1): 337-346, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22081604

RESUMO

Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.


Assuntos
Colicinas/química , Colicinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Difração de Nêutrons , Porinas/metabolismo , Detergentes/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Modelos Moleculares , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Fatores de Tempo
19.
Biomacromolecules ; 14(6): 2014-22, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23617615

RESUMO

Lipopolysaccharides (LPS) make up approximately 75% of the Gram-negative bacterial outer membrane (OM) surface, but because of the complexity of the molecule, there are very few model OMs that include LPS. The LPS molecule consists of lipid A, which anchors the LPS within the OM, a core polysaccharide region, and a variable O-antigen polysaccharide chain. In this work we used RcLPS (consisting of lipid A plus the first seven sugars of the core polysaccharide) from a rough strain of Escherichia coli to form stable monolayers of LPS at the air-liquid interface. The vertical structure RcLPS monolayers were characterized using neutron and X-ray reflectometry, while the lateral structure was investigated using grazing incidence X-ray diffraction and Brewster angle microscopy. It was found that RcLPS monolayers at surface pressures of 20 mN m(-1) and above are resolved as hydrocarbon tails, an inner headgroup, and an outer headgroup of polysaccharide with increasing solvation from tails to outer headgroups. The lateral organization of the hydrocarbon lipid chains displays an oblique hexagonal unit cell at all surface pressures, with only the chain tilt angle changing with surface pressure. This is in contrast to lipid A, which displays hexagonal or, above 20 mN m(-1), distorted hexagonal packing. This work provides the first complete structural analysis of a realistic E. coli OM surface model.


Assuntos
Escherichia coli/química , Lipopolissacarídeos/química , Configuração de Carboidratos , Modelos Teóricos , Difração de Raios X
20.
Artigo em Inglês | MEDLINE | ID: mdl-37931023

RESUMO

Sensors that can quickly measure the lipase activity from biological samples are useful in enzyme production and medical diagnostics. However, current lipase sensors have limitations such as requiring fluorescent labels, pH control of buffer vehicles, or lengthy assay preparation. We introduce a sparsely tethered triglyceride substrate anchored off of a gold electrode for the impedance sensing of real-time lipase activity. The tethered substrate is self-assembled using a rapid solvent exchange technique and can form an anchored bilayer 1 nm off the gold electrode. This allows for an aqueous reservoir region, providing access to ions transported through membrane defects caused by triglyceride enzymatic hydrolysis. Electrical impedance spectroscopy techniques can readily detect the decrease in resistance caused by enzymatically induced defects. This rapid and reliable lipase detection method can have potential applications in disease studies, monitoring of lipase production, and as point-of-care diagnostic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA