Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 581(7809): 428-433, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461641

RESUMO

After severe brain injury, it can be difficult to determine the state of consciousness of a patient, to determine whether the patient is unresponsive or perhaps minimally conscious1, and to predict whether they will recover. These diagnoses and prognoses are crucial, as they determine therapeutic strategies such as pain management, and can underlie end-of-life decisions2,3. Nevertheless, there is an error rate of up to 40% in determining the state of consciousness in patients with brain injuries4,5. Olfaction relies on brain structures that are involved in the basic mechanisms of arousal6, and we therefore hypothesized that it may serve as a biomarker for consciousness7. Here we use a non-verbal non-task-dependent measure known as the sniff response8-11 to determine consciousness in patients with brain injuries. By measuring odorant-dependent sniffing, we gain a sensitive measure of olfactory function10-15. We measured the sniff response repeatedly over time in patients with severe brain injuries and found that sniff responses significantly discriminated between unresponsive and minimally conscious states at the group level. Notably, at the single-patient level, if an unresponsive patient had a sniff response, this assured future regaining of consciousness. In addition, olfactory sniff responses were associated with long-term survival rates. These results highlight the importance of olfaction in human brain function, and provide an accessible tool that signals consciousness and recovery in patients with brain injuries.


Assuntos
Lesões Encefálicas/diagnóstico , Lesões Encefálicas/fisiopatologia , Estado de Consciência/fisiologia , Percepção Olfatória/fisiologia , Estado Vegetativo Persistente/diagnóstico , Estado Vegetativo Persistente/fisiopatologia , Olfato/fisiologia , Adulto , Nível de Alerta , Erros de Diagnóstico/prevenção & controle , Feminino , Humanos , Masculino , Odorantes/análise , Prognóstico , Recuperação de Função Fisiológica/fisiologia , Sensibilidade e Especificidade , Análise de Sobrevida
2.
Cereb Cortex ; 26(11): 4180-4191, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591145

RESUMO

Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose.

3.
J Neurophysiol ; 115(5): 2294-302, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26888107

RESUMO

Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9-15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5-4 Hz) and slow spindle (9-12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations.


Assuntos
Ritmo Delta , Odorantes , Percepção Olfatória , Sono/fisiologia , Adulto , Nível de Alerta , Feminino , Humanos , Masculino
4.
J Neurosci ; 34(46): 15382-93, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392505

RESUMO

Recent findings suggest that novel associations can be learned during sleep. However, whether associative learning during sleep can alter later waking behavior and whether such behavioral changes last for minutes, hours, or days remain unknown. We tested the hypothesis that olfactory aversive conditioning during sleep will alter cigarette-smoking behavior during ensuing wakefulness. A total of 66 human subjects wishing to quit smoking participated in the study (23 females; mean age, 28.7 ± 5.2 years). Subjects completed a daily smoking diary detailing the number of cigarettes smoked during 7 d before and following a 1 d or night protocol of conditioning between cigarette odor and profoundly unpleasant odors. We observed significant reductions in the number of cigarettes smoked following olfactory aversive conditioning during stage 2 and rapid eye movement (REM) sleep but not following aversive conditioning during wakefulness (p < 0.05). Moreover, the reduction in smoking following aversive conditioning during stage 2 (34.4 ± 30.1%) was greater and longer lasting compared with the reduction following aversive conditioning during REM (11.9 ± 19.2%, p < 0.05). Finally, the reduction in smoking following aversive conditioning during sleep was significantly greater than in two separate control sleep experiments that tested aversive odors alone and the effects of cigarette odors and aversive odors without pairing. To conclude, a single night of olfactory aversive conditioning during sleep significantly reduced cigarette-smoking behavior in a sleep stage-dependent manner, and this effect persisted for several days.


Assuntos
Aprendizagem por Associação , Terapia Aversiva/métodos , Fases do Sono/fisiologia , Abandono do Hábito de Fumar/métodos , Adulto , Feminino , Humanos , Masculino , Percepção Olfatória , Olfato , Abandono do Hábito de Fumar/psicologia , Vigília , Adulto Jovem
5.
Curr Biol ; 24(7): R263-4, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24698370

RESUMO

Consciously undetected events are represented at the sensory-motor level and in the neurons of sensory-motor control, for example, consciously undetected visual targets drive eye movements [1] and neural activity [2]. Olfaction offers an opportunity to investigate processing of undetected stimuli through measurements of the sniff-response: odorant-specific modulations of nasal airflow [3-6]. Here, we report evidence that consciously undetected odorants modulate sniffing in a predicted manner. Moreover, in our study we observed that sniff-modulations recurred at least 10 seconds after the onset of an undetected odor, implying that information which was not consciously perceived was nevertheless maintained in memory, available for future decision making.


Assuntos
Odorantes , Olfato/fisiologia , Análise de Variância , Humanos , Desempenho Psicomotor , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA