Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant J ; 118(2): 437-456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198218

RESUMO

Trehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they are believed to play pivotal regulatory roles in trehalose metabolism. However, their precise functions in carbon metabolism and crop yield have remained largely unknown. Here, BnaC02.TPS8, a class II TPS gene, is shown to be specifically expressed in mature leaves and the developing pod walls of Brassica napus. Overexpression of BnaC02.TPS8 increased photosynthesis and the accumulation of sugars, starch, and biomass compared to wild type. Metabolomic analysis of BnaC02.TPS8 overexpressing lines and CRISPR/Cas9 mutants indicated that BnaC02.TPS8 enhanced the partitioning of photoassimilate into starch and sucrose, as opposed to glycolytic intermediates and organic acids, which might be associated with TPS activity. Furthermore, the overexpression of BnaC02.TPS8 not only increased seed yield but also enhanced seed oil accumulation and improved the oil fatty acid composition in B. napus under both high nitrogen (N) and low N conditions in the field. These results highlight the role of class II TPS in impacting photosynthesis and seed yield of B. napus, and BnaC02.TPS8 emerges as a promising target for improving B. napus seed yield.


Assuntos
Brassica napus , Glucosiltransferases , Brassica napus/genética , Brassica napus/metabolismo , Fotossíntese , Sementes/genética , Sementes/metabolismo , Amido/metabolismo
2.
Planta ; 259(5): 122, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619628

RESUMO

MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.


Assuntos
Arabidopsis , Brassica napus , Fosfatos Açúcares , Trealose , Antocianinas , Arabidopsis/genética , Brassica napus/genética , Carbono , Flavonoides , Nitrogênio , Trealose/análogos & derivados , Técnicas do Sistema de Duplo-Híbrido
3.
Plant Physiol ; 191(1): 352-368, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36179100

RESUMO

The degradation products of glucosinolates (GSLs) greatly lower the nutritional value of rapeseed (Brassica napus) meal; thus, reduction of seed GSL content (SGC) has become an important objective of rapeseed breeding. In our previous study, we finely mapped a major QTL (qGSL-C2) for SGC to a 49-kb collinear region on B. rapa chromosome A2. Here, we experimentally validated that BnaC2.MYB28, encoding an R2R3-MYB transcription factor, is the causal gene of qGSL-C2. BnaC2.MYB28 is a nucleus-localized protein mainly expressed in vegetative tissues. Knockout of BnaC2.MYB28 in the high-SGC parent G120 reduced SGC to a value lower than that in the low-SGC parent ZY50, while overexpression of BnaC2.MYB28 in both parental lines (G120 and ZY50) led to extremely high SGC, indicating that BnaC2.MYB28 acts as a positive regulator of SGC in both parents. Molecular characterization revealed that BnaC2.MYB28 forms a homodimer and specifically interacts with BnaMYC3. Moreover, BnaC2.MYB28 can directly activate the expression of GSL biosynthesis genes. Differential expression abundance resulting from the polymorphic promoter sequences, in combination with the different capability in activating downstream genes involved in aliphatic GSL biosynthesis, caused the functional divergence of BnaC2.MYB28 in SGC regulation between the parents. Natural variation of BnaC2.MYB28 was highly associated with SGC in natural germplasm and has undergone artificial selection in modern low-GSL breeding. This study provides important insights into the core function of BnaC2.MYB28 in regulating SGC and a promising strategy for manipulating SGC in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Glucosinolatos/metabolismo , Melhoramento Vegetal , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo
4.
Plant Cell Environ ; 47(4): 1023-1040, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984059

RESUMO

Drought stress poses a persistent threat to field crops and significantly limits global agricultural productivity. Plants employ ubiquitin-dependent degradation as a crucial post-translational regulatory mechanism to swiftly adapt to changing environmental conditions. JUL1 is a RING-type E3 ligase related to drought stress in Arabidopsis. In this study, we explored the function of BnaJUL1 (a homologous gene of JUL1 in Brassica napus) and discovered a novel gene BnaTBCC1 participating in drought tolerance. First, we utilised BnaJUL1-cri materials through the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 system. Second, we confirmed that BnaJUL1 regulated drought tolerance through the drought tolerance assay and transcriptome analysis. Then, we identified a series of proteins interacting with BnaJUL1 through yeast library screening, including BnaTBCC1 (a tubulin binding cofactor C domain-containing protein); whose homologous gene TBCC1 knockdown mutants (tbcc1-1) exhibited ABA-sensitive germination in Arabidopsis, we then confirmed the involvement of BnaTBCC1 in drought tolerance in both Arabidopsis and Brassica. Finally, we established that BnaJUL1 could ubiquitinate and degrade BnaTBCC1 to regulate drought tolerance. Consequently, our study unveils BnaJUL1 as a novel regulator that ubiquitinates and degrades BnaTBCC1 to modulate drought tolerance and provided desirable germplasm for further breeding of drought tolerance in rapeseed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Resistência à Seca , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Ubiquitina/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo
5.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456625

RESUMO

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Assuntos
Brassica napus , Brassica napus/genética , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Genômica , Fenótipo
6.
Mol Breed ; 43(11): 79, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954031

RESUMO

Seed weight, which is highly correlated to seed size, is a critical agronomic trait that determines the yield of Brassica napus. However, there have been limited researches on the genes involved in regulating seed size. In Arabidopsis thaliana, ENHANCER OF DA1 (EOD1), an E3 ubiquitin ligase gene, has been identified as a significant negative regulator in controlling organ size, but the function of its homologs in rapeseed remains unknown. Only two homologous of EOD1, BnaEOD1.A04 and BnaEOD1.C04, have been found in B. napus and were mutated using the CRISPR-Cas9 system. Three T-DNA-free lines, T2-157-1-C8, T2-390-2-B8, and T2-397-2-E2, were identified from the homozygous T2 mutant lines. The BnaEOD1.A04 showed a similar type of editing in these mutants, whereas the BnaEOD1.C04 in T2-397-2-E2 was only missing 26 amino acids, and the translation was not prematurely terminated, which was different from the other two mutants. In parallel, mutation of BnaEOD1s resulted in a noteworthy increase in both seed size and seed weight in the three editing lines. Additionally, there was a significant decline in the number of seeds per silique (SPS) and silique length (SL) in T2-157-1-C8 and T2-390-2-B8, but T2-397-2-E2 did not show any significant changes in the SPS and SL, possibly due to distinct types of editing in the three lines. The above results indicate the conserved function of EOD1 homologs and provides promising germplasm for breeding novel high-yield rapeseed varieties by improving seed size and thousand-seed weight. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01430-z.

7.
Mol Breed ; 43(2): 11, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37313129

RESUMO

Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01355-7.

8.
Plant Biotechnol J ; 20(1): 211-225, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525252

RESUMO

A high content of seed glucosinolates and their degradation products imposes anti-nutritional effects on livestock; therefore, persistent efforts are made to reduce the seed GSL content to increase the commercial value of rapeseed meal. Here, we dissected the genetic structure of SGC by genome-wide association studies (GWAS) combined with transcriptome-wide association studies (TWAS). Fifteen reliable quantitative trait loci (QTLs) were identified to be associated with the reduced SGC in modern B. napus cultivars by GWAS. Analysis of the selection strength and haplotypes at these QTLs revealed that low SGC was predominantly generated by the co-selection of qGSL.A02.2, qGSL.C02.1, qGSL.A09.2, and qGSL.C09.1. Integration of the results from TWAS, comprehensive bioinformatics, and POCKET algorithm analyses indicated that BnaC02.GTR2 (BnaC02g42260D) is a candidate gene underlying qGSL.C02.1. Using CRISPR/Cas9-derived Bna.gtr2s knockout mutants, we experimentally verified that both BnaC02.GTR2 and its three paralogs positively regulate seed GSL accumulation but negatively regulated vegetative tissue GSL contents. In addition, we observed smaller seeds with higher seed oil content in these Bna.gtr2 mutants. Furthermore, both RNA-seq and correlation analyses suggested that Bna.GTR2s might play a comprehensive role in seed development, such as amino acid accumulation, GSL synthesis, sugar assimilation, and oil accumulation. This study unravels the breeding selection history of low-SGC improvement and provides new insights into the molecular function of Bna.GTR2s in both seed GSL accumulation and seed development in B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla/métodos , Glucosinolatos/metabolismo , Melhoramento Vegetal/métodos , Sementes , Transcriptoma/genética
9.
J Exp Bot ; 73(1): 154-167, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34486674

RESUMO

Siliques are a major carbohydrate source of energy for later seed development in rapeseed (Brassica napus). Thus, silique length has received great attention from breeders. We previously detected a novel quantitative trait locus cqSL-C7 that controls silique length in B. napus. Here, we further validated the cqSL-C7 locus and isolated its causal gene (BnaC7.ROT3) by map-based cloning. In 'Zhongshuang11' (parent line with long siliques), BnaC7.ROT3 encodes the potential cytochrome P450 monooxygenase CYP90C1, whereas in 'G120' (parent line with short siliques), a single nucleotide deletion in the fifth exon of BnaC7.ROT3 results in a loss-of-function truncated protein. Sub-cellular localization and expression pattern analysis revealed that BnaC7.ROT3 is a membrane-localized protein mainly expressed in leaves, flowers and siliques. Cytological observations showed that the cells in silique walls of BnaC7.ROT3-transformed positive plants were longer than those of transgene-negative plants in the background of 'G120', suggesting that BnaC7.ROT3 affects cell elongation. Haplotype analysis demonstrated that most alleles of BnaC7.ROT3 are favorable in B. napus germplasms, and its homologs may also be involved in silique length regulation. Our findings provide novel insights into the regulatory mechanisms of natural silique length variations and valuable genetic resources for the improvement of silique length in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas/genética , Sementes
10.
Plant J ; 103(5): 1723-1734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445599

RESUMO

The Brassica-specific gene MS5 mediates early meiotic progression, and its allelic variants contribute to a valuable genic male sterility three-line hybrid production system in rapeseed (Brassica napus L.). However, the underlying mechanisms of its triallelic inheritance are poorly understood. Herein, we show that the restorer allele MS5a and the maintainer allele MS5c are both necessary for male fertility in B. napus. The functional divergence of MS5a and MS5c is strongly related to sequence variations in their coding regions and less strongly to their promoter regions. The male-sterile allele MS5b encodes a chimeric protein containing only the complete MS5 coiled-coil (CC) domain, having lost the MS5 superfamily domain. Both MS5a and MS5c can form homodimers in the nucleus via the CC domain. MS5b can interact competitively with MS5a or MS5c to form non-functional heterodimers. Owing to the close transcript levels of MS5b and MS5c in MS5b MS5c , these heterodimers induced a dominant-negative effect of MS5b on MS5c , resulting in a male-sterile phenotype. The extremely high transcript abundance of MS5a maintains sufficient MS5a homodimers in MS5a MS5b , causing the recovery of male sterility. These findings provide substantial genetic and molecular evidence to improve our understanding of the mechanisms underlying the multiallelic inheritance of MS5, and enable the construction of a solid foundation for improved use of the MS5-controlled GMS system in Brassica species.


Assuntos
Brassica napus/genética , Genes de Plantas/genética , Alelos , Fertilidade/genética , Genes Dominantes/genética , Genes Supressores
11.
Planta ; 253(2): 34, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459878

RESUMO

MAIN CONCLUSION: BnPGIPs interacted with Sclerotinia sclerotiorum PGs to improve rapeseed SSR resistance at different levels; the BnPGIP-overexpression lines did not affect plant morphology or seed quality traits. Plant polygalacturonase-inhibiting proteins (PGIPs) play a crucial role in plant defence against phytopathogenic fungi by inhibiting fungal polygalacturonase (PG) activity. We overexpressed BnPGIP2, BnPGIP5, and BnPGIP10 genes in an inbred line 7492 of rapeseed (Brassica napus). Compared with 7492WT, the overexpression of BnPGIP2 lines significantly increased Sclerotinia sclerotiorum resistance in both seedlings and adult plants. BnPGIP5 overexpression lines exhibited decreased S. sclerotiorum disease symptoms in seedlings only, whereas BnPGIP10 overexpression lines did not improve Sclerotinia resistance for seedlings or adult plants. Quantitative real-time PCR analysis of S. sclerotiorum PG1, SsPG3, SsPG5, and SsPG6 genes in overexpressing BnPGIP lines showed that these pathogenic genes in the Sclerotinia resistance transgenic lines exhibited low expression in stem tissues. Split-luciferase complementation experiments confirmed the following: BnPGIP2 interacts with SsPG1 and SsPG6 but not with SsPG3 or SsPG5; BnPGIP5 interacts with SsPG3 and SsPG6 but not with SsPG1 or SsPG5; and BnPGIP10 interacts with SsPG1 but not SsPG3, SsPG5, or SsPG6. Leaf crude protein extracts from BnPGIP2 and BnPGIP5 transgenic lines displayed high inhibitory activity against the SsPG crude protein. BnPGIP-overexpression lines with Sclerotinia resistance displayed a lower accumulation of H2O2 and higher expression of the H2O2-removing gene BnAPX (ascorbate peroxidase) than 7492WT, as well as elevated expression of defence response genes including jasmonic acid/ethylene and salicylic acid pathways after S. sclerotiorum infection. The plants overexpressing BnPGIP exhibited no difference in either agronomic traits or grain yield from 7492WT. This study provides potential target genes for developing S. sclerotiorum resistance in rapeseed.


Assuntos
Ascomicetos , Brassica napus , Resistência à Doença , Proteínas de Plantas , Poligalacturonase , Ascomicetos/enzimologia , Brassica napus/enzimologia , Brassica napus/genética , Brassica napus/microbiologia , Resistência à Doença/genética , Expressão Gênica , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Poligalacturonase/metabolismo
12.
J Exp Bot ; 72(13): 4796-4808, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33872346

RESUMO

Rapeseed (Brassica napus L.) is an important oil crop worldwide, and effective weed control can protect its yield and quality. Farmers can benefit from cultivars tolerant to herbicides such as glyphosate. Amino acid substitutions in enolpyruvylshikimate-3-phosphate synthase (EPSPS) render the plant less sensitive to glyphosate. Therefore, we aimed to optimize the glyphosate tolerance trait in rapeseed via endogenous EPSPS modification. To achieve effective gene replacement in B. napus L., we employed a CRISPR/Cas9 system expressing single-guide RNAs (sgRNAs) cleaved by the CRISPR-associated RNA endoribonuclease Csy4 from Pseudomonas aeruginosa, for targeted induction of double-strand breaks. Both the donor template and a geminiviral replicon harbouring an sgRNA expression cassette were introduced into plant cells. Using sgRNAs targeting adjacent donor DNA template containing synonymous mutations in sgRNA sites, we achieved precise gene replacements in the endogenous B. napus EPSPS gene, BnaC04EPSPS, resulting in amino acid substitutions at frequencies up to 20%. Rapeseed seedlings harbouring these substitutions were glyphosate-tolerant. Furthermore, modifications in BnaC04EPSPS were precisely transmitted to the next generation. Our genome editing strategy enables highly efficient gene targeting and the induction of glyphosate tolerance in oilseed rape.


Assuntos
Brassica napus , RNA Guia de Cinetoplastídeos , Brassica napus/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA , Glicina/análogos & derivados , Processamento Pós-Transcricional do RNA , Replicon , Glifosato
13.
Theor Appl Genet ; 134(8): 2653-2669, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34002254

RESUMO

KEY MESSAGE: A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.


Assuntos
Brassica napus/crescimento & desenvolvimento , Deleção Cromossômica , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Brassica napus/genética , Haplótipos , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes/genética
14.
Theor Appl Genet ; 133(4): 1321-1335, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32002584

RESUMO

KEY MESSAGE: cqSW.A03-2, one of the six identified quantitative trait loci associated with thousand-seed weight in rapeseed, is mapped to a 61.6-kb region on chromosome A03 and corresponds to the candidate gene BnaA03G37960D. Seed weight is an important factor that determines the seed yield of oilseed rape (Brassica napus L.). To elucidate the genetic mechanism of thousand-seed weight (TSW), quantitative trait locus (QTL) mapping was conducted using a double haploid population derived from the cross between an elite line ZY50 and a pol cytoplasmic male sterility restorer line 7-5. The genetic basis of TSW was dissected into six major QTLs. One major QTL denoted as cqSW.A03-2, which explained 8.46-13.70% of the phenotypic variation, was detected across multiple environments. To uncover the genetic basis of cqSW.A03-2, a set of near-isogenic lines were developed. Based on the test of self-pollinated progenies, cqSW.A03-2 was identified as a single Mendelian factor and the ZY50 allele at cqSW.A03-2 showed a positive effect on TSW. Fine mapping delimited the cqSW.A03-2 locus into a 61.6-kb region, and 18 genes within this region were predicted. Candidate gene association analysis and expression analysis indicated that a histidine kinase gene (BnaA03G37960D) is likely to be the candidate gene for the cqSW.A03-2 locus. Our results may contribute to a better understanding of the molecular mechanism of seed weight regulation and promote the breeding program for yield improvement in rapeseed.


Assuntos
Brassica napus/genética , Estudos de Associação Genética , Ligação Genética , Mapeamento Físico do Cromossomo , Sementes/genética , Sequência de Bases , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Tamanho do Órgão/genética , Fenótipo , Locos de Características Quantitativas/genética
15.
Theor Appl Genet ; 133(2): 479-490, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832742

RESUMO

KEY MESSAGE: QTL mapping and candidate gene analysis indicate that allelic variations in BnaC2.MYB28 resulted from homeologous exchange and determine difference in seed glucosinolate content. A low seed glucosinolate content has long been an important breeding objective in rapeseed improvement. However, the molecular mechanisms underlying seed GSL content variations remain to be elucidated in allotetraploid Brassica napus. Here, we developed a double haploid population from a cross between two B. napus accessions that possess relatively low, but significantly different seed GSL contents and identified a major QTL, qGSL-C2, on chromosome C02 that explains 30.88-72.87% of the phenotypic variation observed in five environments. Using near-isogenic lines, we further delimited qGSL-C2 to a physical region of 49 kb on the B. rapa chromosome A02 which is highly homologous to the target C02 interval. Among five candidate genes, BnaC2.MYB28, a homologue of the Arabidopsis MYB28 encoding a putative R2R3-MYB-type transcription factor functioning in aliphatic methionine-derived GSL synthesis, was most likely to be the target gene underlying the QTL. Sequence analysis revealed multiple insertion/deletion and SNP variations in the genomic region between the alleles of the NILs. Furthermore, the allelic variations in BnaC2.MYB28 in the natural B. napus population were significantly associated with seed GSL content. Remarkably, the phylogenetic analysis and sequence comparison suggested that while the BnaC2.MYB28 allele from the parental line G120 was inherited from B. oleracea BolC2.MYB28, its counterpart from the other parent, 9172, most likely evolved from B. rapa BraA2.MYB28 via possible homeologous exchange. Our study promotes greater understanding of the molecular regulation of seed GSL content and provides useful molecular markers for seed GSL improvement in B. napus.


Assuntos
Brassica napus/genética , Glucosinolatos/metabolismo , Locos de Características Quantitativas , Sementes/genética , Fatores de Transcrição/genética , Alelos , Proteínas de Arabidopsis/genética , Brassica napus/metabolismo , Brassica rapa/genética , Mapeamento Cromossômico , Evolução Molecular , Estudos de Associação Genética , Glucosinolatos/genética , Haploidia , Histona Acetiltransferases/genética , Fenótipo , Filogenia , Melhoramento Vegetal , Sementes/metabolismo , Fatores de Transcrição/metabolismo
16.
Plant Cell ; 28(6): 1263-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27194707

RESUMO

During meiotic prophase I, chromatin undergoes dynamic changes to establish a structural basis for essential meiotic events. However, the mechanism that coordinates chromosome structure and meiotic progression remains poorly understood in plants. Here, we characterized a spontaneous sterile mutant MS5(b)MS5(b) in oilseed rape (Brassica napus) and found its meiotic chromosomes were arrested at leptotene. MS5 is preferentially expressed in reproductive organs and encodes a Brassica-specific protein carrying conserved coiled-coil and DUF626 domains with unknown function. MS5 is essential for pairing of homologs in meiosis, but not necessary for the initiation of DNA double-strand breaks. The distribution of the axis element-associated protein ASY1 occurs independently of MS5, but localization of the meiotic cohesion subunit SYN1 requires functional MS5. Furthermore, both the central element of the synaptonemal complex and the recombination element do not properly form in MS5(b)MS5(b) mutants. Our results demonstrate that MS5 participates in progression of meiosis during early prophase I and its allelic variants lead to differences in fertility, which may provide a promising strategy for pollination control for heterosis breeding.


Assuntos
Brassica napus/metabolismo , Meiose/fisiologia , Brassica napus/genética , Brassica napus/fisiologia , Cromossomos de Plantas/genética , Quebras de DNA de Cadeia Dupla , Meiose/genética , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prófase/genética , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
17.
J Exp Bot ; 69(12): 3141-3155, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29648614

RESUMO

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is the most serious disease affecting the yield of the agriculturally and economically important crop Brassica napus (rapeseed). In this study, Oryza sativa polygalacturonase-inhibiting protein 2 (OsPGIP2) was found to effectively enhanced rapeseed immunity against S. sclerotiorum infection. Leaf extracts of B. napus plants overexpressing OsPGIP2 showed enhanced S. sclerotiorum resistance by delaying pathogen infection. The constitutive expression of OsPGIP2 in rapeseed plants provided a rapid and effective defense response, which included the production of reactive oxygen species, interactions with S. sclerotiorum polygalacturonases (SsPG3 and SsPG6), and effects on the expression of defense genes. RNA sequencing analysis revealed that the pathogen induced many differentially expressed genes associated with pathogen recognition, redox homeostasis, mitogen-activated protein kinase signaling cascades, hormone signaling pathways, pathogen-/defense-related genes, and cell wall-related genes. The overexpression of OsPGIP2 also led to constitutively increased cell wall cellulose and hemicellulose contents in stems without compromising seed quality. The results demonstrate that OsPGIP2 plays a major role in rapeseed defense mechanisms, and we propose a model for OsPGIP2-conferred resistance to S. sclerotiorum in these plants.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Brassica napus/metabolismo , Brassica napus/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
19.
J Exp Bot ; 68(15): 4115-4123, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922764

RESUMO

Two forms of male-sterile cytoplasm, designated nap and pol, are found in the oilseed rape species, Brassica napus. The nap cytoplasm is observed in most B. napus varieties, and it confers male sterility on a limited number of cultivars that lack the corresponding restorer gene, Rfn. In the present study, using linkage analysis in combination with 5652 BC1 progeny derived from a cross between a nap cytoplasmic male sterility (CMS) line 181A and a restorer line H5, we delimited the Rfn gene to a 10.5 kb region on chromosome A09, which contained three putative ORFs. Complementation by transformation rescue revealed that the introduction of ORF2, which encodes a pentatricopeptide repeat (PPR) protein, resulted in the recovery of fertility of nap CMS plants. Expression analysis suggested that the Rfn was highly expressed in flower buds and it was preferentially expressed in the tapetum and meiocytes during anther development. Further RNA gel blots and immunodetection suggested that the Rfn gene may play a complicated role in restoring the nap CMS. Our work laid the foundation for dissecting the molecular basis of CMS fertility restoration and the nuclear-mitochondrial interactions in CMS/Rf systems.


Assuntos
Brassica napus/fisiologia , Citoplasma/metabolismo , Proteínas de Plantas/genética , Brassica napus/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
20.
Plant Physiol ; 169(4): 2744-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26494121

RESUMO

Number of seeds per silique (NSS) is an important determinant of seed yield potential in Brassicaceae crops, and it is controlled by naturally occurring quantitative trait loci. We previously mapped a major quantitative trait locus, qSS.C9, on the C9 chromosome that controls NSS in Brassica napus. To gain a better understanding of how qSS.C9 controls NSS in B. napus, we isolated this locus through a map-based cloning strategy. qSS.C9 encodes a predicted small protein with 119 amino acids, designated as BnaC9.SMG7b, that shows homology with the Ever ShorterTelomere1 tertratricopeptide repeats and Ever Shorter Telomere central domains of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7). BnaC9.SMG7b plays a role in regulating the formation of functional female gametophyte, thus determining the formation of functional megaspores and then mature ovules. Natural loss or artificial knockdown of BnaC9.SMG7b significantly reduces the number of functional ovules per silique and thus, results in decreased seed number, indicating that qSS.C9 is a positive regulator of NSS in B. napus. Sequence and function analyses show that BnaC9.SMG7b experiences a subfunctionalization process that causes loss of function in nonsense-mediated mRNA decay, such as in Arabidopsis SMG7. Haplotype analysis in 84 accessions showed that the favorable BnaC9.SMG7b alleles are prevalent in modern B. napus germplasms, suggesting that this locus has been a major selection target of B. napus improvement. Our results represent the first step toward unraveling the molecular mechanism that controls the natural variation of NSS in B. napus.


Assuntos
Brassica napus/fisiologia , Óvulo Vegetal/fisiologia , Proteínas de Plantas/fisiologia , Sementes/fisiologia , Alelos , Sequência de Aminoácidos , Brassica napus/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clonagem Molecular/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genótipo , Haplótipos , Microscopia Confocal , Dados de Sequência Molecular , Degradação do RNAm Mediada por Códon sem Sentido/genética , Óvulo Vegetal/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA