Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230228, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853557

RESUMO

Rodents actively learn new motor skills for survival in reaction to changing environments. Despite the classic view of the primary motor cortex (M1) as a simple muscle relay region, it is now known to play a significant role in motor skill acquisition. The secondary motor cortex (M2) is reported to be a crucial region for motor learning as well as for its role in motor execution and planning. Although these two regions are known for the part they play in motor learning, the role of direct connection and synaptic correlates between these two regions remains elusive. Here, we confirm M2 to M1 connectivity with a series of tracing experiments. We also show that the accelerating rotarod task successfully induces motor skill acquisition in mice. For mice that underwent rotarod training, learner mice showed increased synaptic density and spine head size for synapses between activated cell populations of M2 and M1. Non-learner mice did not show these synaptic changes. Collectively, these data suggest the potential importance of synaptic plasticity between activated cell populations as a potential mechanism of motor learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Aprendizagem , Córtex Motor , Destreza Motora , Sinapses , Animais , Córtex Motor/fisiologia , Camundongos , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Camundongos Endogâmicos C57BL , Masculino
2.
Genes Brain Behav ; 21(7): e12826, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35815710

RESUMO

The hippocampus is one of the most widely investigated brain regions with its massive contributions to multiple behaviours. Especially, the hippocampus is subdivided into the dorsal and ventral parts playing distinct roles. In this review, we will focus on the ventral hippocampus, especially the ventral CA1 (vCA1), whose role is being actively discovered. vCA1 is well known to be associated with emotion-like behaviour, in both positive (reward) and negative (aversive) stimuli. How can this small region in volume mediate such variety of responses? This question will be answered with technologies up to date that have allowed us to study in-depth the specific neural circuit and to map the complex connectivity.


Assuntos
Medo , Hipocampo , Medo/fisiologia , Hipocampo/fisiologia
3.
Sci Adv ; 8(41): eabo7527, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223467

RESUMO

Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.

4.
Mol Brain ; 14(1): 174, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876180

RESUMO

Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate receptor (NMDAR), generates a rapidly-acting antidepressant effect. It exerts psychomimetic effects, yet demands a further investigation of its mechanism. Previous research showed that ketamine did no longer promote hyperlocomotion in GluN2D knockout (KO) mice, which is a subunit of NMDAR. In the present study, we tested whether GluN2D-containing NMDARs participate in the physiological changes in the medial prefrontal cortex (mPFC) triggered by ketamine. Sub-anesthetic dose of ketamine (25 mg/kg) elevated the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in wild-type (WT) mice, but not in GluN2D KO mice, 1 h after the injection. The amplitude of sEPSC and paired-pulse ratio (PPR) were unaltered by ketamine in both WT and GluN2D KO mice. These findings suggest that GluN2D-containing NMDARs might play a role in the ketamine-mediated changes in glutamatergic neurons in mPFC and, presumably, in ketamine-induced hyperlocomotion.


Assuntos
Ketamina , Animais , Potenciais Pós-Sinápticos Excitadores , Ketamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA