Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 14(4): 6305-16, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24694678

RESUMO

A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Imagens de Fantasmas , Radiometria , Tórax/anatomia & histologia , Humanos , Fótons , Intensificação de Imagem Radiográfica , Radiografia Torácica , Processamento de Sinais Assistido por Computador , Propriedades de Superfície
2.
Opt Express ; 21(23): 27770-9, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514292

RESUMO

For real-time dosimetry in electron beam therapy, an integrated fiber-optic dosimeter (FOD) is developed using a water-equivalent dosimeter probe, four transmitting optical fibers, and a multichannel light-measuring device. The dosimeter probe is composed of two inner sensors, a scintillation sensor and a Cerenkov sensor, and each sensor has two different channels. Accordingly, we measured four separate light signals from each channel in the dosimeter probe, simultaneously, and then obtained the scintillation and Cerenkov signals using a subtraction method. To evaluate the performance of the integrated FOD, we measured the light signals according to the irradiation angle of the electron beam, the depth variation of the solid water phantom, and the electron beam energy. In conclusion, we demonstrated that the pure scintillation and Cerenkov signals obtained by an integrated FOD system based on a subtraction method can be effectively used for calibrating the conditions of high-energy electron beams in radiotherapy.


Assuntos
Elétrons , Tecnologia de Fibra Óptica/instrumentação , Fibras Ópticas , Imagens de Fantasmas , Radiometria/instrumentação , Contagem de Cintilação/instrumentação , Desenho de Equipamento , Humanos , Dosagem Radioterapêutica
3.
Environ Health Toxicol ; 32: e2017006, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231688

RESUMO

This study was conducted to evaluate the ability of plants to purify indoor air by observing the effective reduction rate among pollutant types of particulate matter (PM) and volatile organic compounds (VOCs). PM and four types of VOCs were measured in a new building that is less than three years old and under three different conditions: before applying the plant, after applying the plant, and a room without a plant. The removal rate of each pollutant type due to the plant was also compared and analyzed. In the case of indoor PM, the removal effect was negligible because of outdoor influence. However, 9% of benzene, 75% of ethylbenzene, 72% of xylene, 75% of styrene, 50% of formaldehyde, 36% of acetaldehyde, 35% of acrolein with acetone, and 85% of toluene were reduced. The purification of indoor air by natural ventilation is meaningless because the ambient PM concentration has recently been high. However, contamination by gaseous materials such as VOCs can effectively be removed through the application of plants.

4.
Environ Health Toxicol ; 32: e2017010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28602069

RESUMO

Traffic-related pollutants have been reported to increase the morbidity of respiratory diseases. In order to apply management policies related to motor vehicles, studies of the floating population living in cities are important. The rate of metro rail transit system use by passengers residing in Seoul is about 54% of total public transportation use. Through the rate of metro use, the people-flow ratios in each administrative area were calculated. By applying a people-flow ratio based on the official census count, the floating population in 25 regions was calculated. The reduced level of deaths among the floating population in 14 regions having the roadside monitoring station was calculated as assuming a 20% reduction of mobile emission based on the policy. The hourly floating population size was calculated by applying the hourly population ratio to the regional population size as specified in the official census count. The number of people moving from 5 a.m. to next day 1 a.m. could not be precisely calculated when the population size was applied, but no issue was observed that would trigger a sizable shift in the rate of population change. The three patterns of increase, decrease, and no change of population in work hours were analyzed. When the concentration of particulate matter less than 10 µm in aerodynamic diameter was reduced by 20%, the number of excess deaths varied according to the difference of the floating population. The effective establishment of directions to manage the pollutants in cities should be carried out by considering the floating population. Although the number of people using the metro system is only an estimate, this disadvantage was supplemented by calculating inflow and outflow ratio of metro users per time in the total floating population in each region. Especially, 54% of metro usage in public transport causes high reliability in application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA