Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nano Lett ; 24(32): 9839-9845, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087826

RESUMO

Hard carbon (HC) is a promising anode candidate for Na-ion batteries (NIBs) because of its excellent Na-storage performance, abundance, and low cost. However, a precise understanding of its Na-storage behavior remains elusive. Herein, based on the D2O/H2SO4-based TMS results collected on charged/discharged state HC electrodes, detailed Na-storage mechanisms (the Na-storage states and active sites in different voltage regions), specific SEI dynamic evolution process (formation, rupture, regeneration and loss), and irreversible capacity contribution (dead Na0, NaH, etc.) were elucidated. Moreover, by employing the online electrochemical mass spectrometry (OEMS) to monitor the gassing behavior of HC-Na half-cell during the overdischarging process, a surprising rehydrogen evolution reaction (re-HER) process at around 0.02 V vs Na+/Na was identified, indicating the occurrence of Na-plating above 0 V vs Na+/Na. Additionally, the typical fluorine ethylene carbonate (FEC) additive was demonstrated to reduce the accumulation of dead Na0 and inhibit the re-HER process triggered by plated Na.

2.
Nano Lett ; 24(4): 1351-1359, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251855

RESUMO

The anomalous Hall effect (AHE) is one of the most fascinating transport properties in condensed matter physics. However, the AHE magnitude, which mainly depends on net spin polarization and band topology, is generally small in oxides and thus limits potential applications. Here, we demonstrate a giant enhancement of AHE in a LaCoO3-induced 5d itinerant ferromagnet SrIrO3 by hydrogenation. The anomalous Hall resistivity and anomalous Hall angle, which are two of the most critical parameters in AHE-based devices, are found to increase to 62.2 µΩ·cm and 3%, respectively, showing an unprecedentedly large enhancement ratio of ∼10000%. Theoretical analysis suggests the key roles of Berry curvature in enhancing AHE. Furthermore, the hydrogenation concomitantly induces the significant elevation of Curie temperature from 75 to 160 K and 40-fold reinforcement of coercivity. Such giant regulation and very large AHE magnitude observed in SrIrO3 could pave the path for 5d oxide devices.

3.
J Am Chem Soc ; 146(22): 15320-15330, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38683738

RESUMO

Palladium hydrides (PdHx) are pivotal in both fundamental research and practical applications across a wide spectrum. PdHx nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature. The substantial challenges in characterizing nanoscale structures contribute to the limited understanding of this anomalous phenomenon. Here, through a series of well-conceived experimental designs and advanced characterization techniques, including aberration-corrected scanning transmission electron microscopy (AC-STEM), in situ X-ray diffraction (XRD), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), we have uncovered evidence that indicates the presence of C and N within the lattice of Pd (PdCxNy), rather than H (PdHx). By combining theoretical calculations, we have thoroughly studied the potential configurations and thermodynamic stability of PdCxNy, demonstrating a 2.5:1 ratio of C to N infiltration into the Pd lattice. Furthermore, we successfully modulated the electronic structure of Pd nanocrystals through C and N doping, enhancing their catalytic activity in methanol oxidation reactions. This breakthrough provides a new perspective on the structure and composition of Pd-based nanocrystals infused with light elements, paving the way for the development of advanced catalytic materials in the future.

4.
Small ; : e2406110, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113670

RESUMO

In this study, state-of-the-art on-line pyrolysis MS (OP-MS) equipped with temperature-controlled cold trap and on-line pyrolysis GC/MS (OP-GC/MS) injected through high-vacuum negative-pressure gas sampling (HVNPGS) programming are originally designed/constructed to identify/quantify the dynamic change of common permanent gases and micromolecule organics from the anode/cathode-electrolyte reactions during thermal runaway (TR) process, and corresponding TR mechanisms are further perfected/complemented. On LiCx anode side, solid electrolyte interphase (SEI) would undergo continuous decomposition and regeneration, and the R-H+ (e.g., HF, ROH, etc.) species derived from electrolyte decomposition would continue to react with Li/LiCx to generate H2. Up to above 200 °C, the O2 would release from the charged NCM cathode and organic radicals would be consumed/oxidized by evolved O2 to form COx, H2O, and more corrosive HF. On the contrary, charged LFP cathode does not present obvious O2 evolution during heating process and the unreacted flammable/toxic organic species would exit in the form of high temperature/high-pressure (HT/HP) vapors within batteries, indicating higher potential safety risks. Additionally, the in depth understanding of the TR mechanism outlined above provides a clear direction for the design/modification of thermostable electrodes and non-flammable electrolytes for safer batteries.

5.
Nano Lett ; 23(8): 3565-3572, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026665

RESUMO

The prominent problem with graphite anodes in practical applications is the detrimental Li plating, resulting in rapid capacity fade and safety hazards. Herein, secondary gas evolution behavior during the Li-plating process was monitored by online electrochemical mass spectrometry (OEMS), and the onset of local microscale Li plating on the graphite anode was precisely/explicitly detected in situ/operando for early safety warnings. The distribution of irreversible capacity loss (e.g., primary and secondary solid electrolyte interface (SEI), dead Li, etc.) under Li-plating conditions was accurately quantified by titration mass spectroscopy (TMS). Based on OEMS/TMS results, the effect of typical VC/FEC additives was recognized at the level of Li plating. The nature of vinylene carbonate (VC)/fluoroethylene carbonate (FEC) additive modification is to enhance the elasticity of primary and secondary SEI by adjusting organic carbonates and/or LiF components, leading to less "dead Li" capacity loss. Though VC-containing electrolyte greatly suppresses the H2/C2H4 (flammable/explosive) evolution during Li plating, more H2 is released from the reductive decomposition of FEC.

6.
Angew Chem Int Ed Engl ; : e202412214, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141606

RESUMO

Electrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium-ion batteries, especially at high charging cut-off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti-synergy effect between Li+-solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which determines the concentration of interfacial solvated-Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+-solvent/anion-rich) interface and anion-derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent-rich) interface and solvent-derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the "inflection voltage" arising from the anti-synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.

7.
Angew Chem Int Ed Engl ; 63(17): e202400254, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38441399

RESUMO

Acting as a passive protective layer, solid-electrolyte interphase (SEI) plays a crucial role in maintaining the stability of the Li-metal anode. Derived from the reductive decomposition of electrolytes (e.g., anion and solvent), the SEI construction presents as an interfacial process accompanied by the dynamic de-solvation process during Li-metal plating. However, typical electrolyte engineering and related SEI modification strategies always ignore the dynamic evolution of electrolyte configuration at the Li/electrolyte interface, which essentially determines the SEI architecture. Herein, by employing advanced electrochemical in situ FT-IR and MRI technologies, we directly visualize the dynamic variations of solvation environments involving Li+-solvent/anion. Remarkably, a weakened Li+-solvent interaction and anion-lean interfacial electrolyte configuration have been synchronously revealed, which is difficult for the fabrication of anion-derived SEI layer. Moreover, as a simple electrochemical regulation strategy, pulse protocol was introduced to effectively restore the interfacial anion concentration, resulting in an enhanced LiF-rich SEI layer and improved Li-metal plating/stripping reversibility.

8.
Nano Lett ; 22(24): 9972-9981, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36512422

RESUMO

Development of high-energy-density rechargeable battery systems not only needs advanced qualitative characterizations for mechanism exploration but also requires accurate quantification technology to quantitatively elucidate products and fairly assess numerous modification strategies. Herein, as a reliable quantification technology, titration mass spectroscopy (TMS) is developed to accurately quantify O-related anionic redox reactions (Li-O2 battery and nickel-cobalt-manganese (NCM)/Li-rich cathodes), parasitic carbonate deposition and decomposition (derived from air-exposure degradation and electrolyte oxidation), and dead Li0 formation (Li-metal battery and over-discharged graphite anode). TMS technology can harvest key information on products (e.g., quantification of oxidized lattice oxygen and solid electrolyte interphase (SEI)/cathode electrolyte interphase (CEI) components) and guide corresponding design strategy by enhancing understanding of the mechanism (e.g., clearly distinguish the catalytic target of highly oxidative Ni4+ on the NCM cathode). Not limited as a rigid quantification tool for widely known products/mechanisms, TMS technology has been demonstrated as a powerful and versatile tool for the investigations of advanced batteries.

9.
J Am Chem Soc ; 144(21): 9292-9301, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593455

RESUMO

CO poisoning of Pt-group metal catalysts is a long-standing problem, particularly for hydrogen oxidation reaction in proton exchange membrane fuel cells. Here, we report a catalyst of Ru oxide-coated Ru supported on TiO2 (Ru@RuO2/TiO2), which can tolerate 1-3% CO, enhanced by about 2 orders of magnitude over the classic PtRu/C catalyst, for hydrogen electrooxidation in a rotating disk electrode test. This catalyst can work stably in 1% CO/H2 for 50 h. About 20% of active sites can survive even in a pure CO environment. The high CO tolerance is not via a traditional bifunctional mechanism, i.e., oxide promoting CO oxidation, but rather via hydrous metal oxide shell blocking CO adsorption. An ab initio molecular dynamics (AIMD) simulation indicates that water confined in grain boundaries of the Ru oxide layer and Ru surface can suppress the diffusion and adsorption of CO. This oxide blocking layer approach opens a promising avenue for the design of high CO-tolerant electrocatalysts for fuel cells.

10.
Angew Chem Int Ed Engl ; 60(40): 22035-22042, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34382306

RESUMO

Sulfonyl fluorides have widespread applications in many important fields, including ligation chemistry, chemical biology, and drug discovery. Therefore, new methods to increase the synthetic efficiency and expand the available structures of sulfonyl fluorides are highly in demand. Here, we introduce a new and powerful class of sulfonyl fluoride hubs, ß-chloro alkenylsulfonyl fluorides (BCASF), which can be constructed via radical chloro-fluorosulfonyl difunctionalization of alkynes under photoredox conditions. BCASF molecules exhibit versatile reactivities and well undergo a series of transformations at the chloride site while keeping the sulfonyl fluoride group intact, including reduction, Suzuki coupling, Sonogashira coupling, as well as nucleophilic substitution with various nitrogen, oxygen, and sulfur nucleophiles. By using BCASF as a synthetic hub, a wide range of sulfonyl fluorides becomes readily accessible, such as cis alkenylsulfonyl fluorides, dienylsulfonyl fluorides, and ynenylsulfonyl fluorides, which are challenging or even not possible to synthesize before with the known methods. Moreover, further application of BCASF to the late-stage modification of peptides and drugs is also demonstrated.

11.
Nat Commun ; 15(1): 7489, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209848

RESUMO

Replacement of expensive and rare platinum with metal-nitrogen-carbon catalysts for oxygen reduction reactions in proton exchange membrane fuel cells is hindered by their inferior activity. Herein, we report a highly active iron-nitrogen-carbon catalyst by optimizing the carbon structure and coordination environments of Fe-N4 sites. A critical high-temperature treatment with ammonium chloride and ammonium bromide not only enhances the intrinsic activity and density of Fe-N4 sites, but also introduces numerous defects, trace Br ions and creates mesopores in the carbon framework. Notably, surface Br ions significantly improve the interaction between the ionomer and catalyst particles, promoting ionomer infiltration and optimizing the O2 transport and charge transfer at triple-phase boundary. This catalyst delivers a high peak power density of 1.86 W cm-2 and 54 mA cm-2 at 0.9 ViR-free in a H2-O2 fuel cells at 80 °C. Our findings highlight the critical role of interface microenvironment regulation.

12.
Front Microbiol ; 14: 1240471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840739

RESUMO

Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish. Columnaris disease can cause heavy economic losses in aquaculture. In this study, whole-genome sequencing was used to characterize this pathogen. F. columnare isolate AH-01 had a circular chromosome and plasmid that encoded a total of 3,022 genes. Isolate GX-01 only had a circular chromosome and encoded 2,965 genes. Genomic islands, prophage regions, and CRISPR/Cas systems were identified in both genomes. Both genomes presented evidence of gene variation and horizontal transfer, both of which are the essential components of genetic diversity, genome plasticity, and functional evolution. Single-gene phylogeny and comparative genome analyses were performed to investigate the variation and evolution of this pathogen. Genetic analysis of 16S rRNA and housekeeping gene sequences significantly clustered 55 F. columnare isolates into four clades. The intragroup identity of the 16S rRNA gene exceeded 99%, while the intergroup identity was below the species delineation threshold. We discovered significant translocation, inversion, and rearrangement events that influenced local synteny within each group. Notably, the observed alignments varied considerably among all the studied groups. The core genomes of all strains with available sequences comprised 747 genes, corresponding to approximately 25% of the genome. Core genome multilocus sequence typing, genome-wide orthology and phylogenetic analyses, and average nucleotide identity suggested that the currently existing F. columnare was an assemblage of several distinct species, with levels of divergence at least equivalent to those between recognized bacterial species. The present investigation provided genomic evidence of gene variation and horizontal transfer, which were the basis of genetic diversity, genome plasticity, and functional evolution. The findings supported a proposed new taxonomic perspective on F. columnare.

13.
J Phys Chem Lett ; 14(19): 4565-4574, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37161991

RESUMO

Cathode electrolyte interphase (CEI) layers derived from electrolyte oxidative decomposition can passivate the cathode surface and prevent its direct contact with electrolyte. The inorganics-dominated inner solid electrolyte layer (SEL) and organics-rich outer quasi-solid-electrolyte layer (qSEL) constitute the CEI layer, and both merge at the junction without a clear boundary, which assures the CEI layer with both ionic-conducting and electron-blocking properties. However, the typical "wash-then-test" pattern of characterizations aiming at the microstructure of CEI layers would dissolve the qSEL and even destroy the SEL, leading to an overanalysis of electrolyte decomposition pathway and misassignment of CEI architecture (e.g., component and morphology). In this study, we established a full-dimensional characterization paradigm (combining Fourier transform infrared, solution NMR, X-ray photoelectron spectroscopy, and mass spectrometry technologies) and reconstructed the original CEI layer model. Besides, the feasibility of this characterization paradigm has been verified in a wide operating voltage range on a typical LiNixMnyCozO2 cathode.

14.
Nat Commun ; 14(1): 8496, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129430

RESUMO

Designing a broad-spectrum gas sensor capable of identifying gas components in complex environments, such as mixed atmospheres or extreme temperatures, is a significant concern for various technologies, including energy, geological science, and planetary exploration. The main challenge lies in finding materials that exhibit high chemical stability and wide working temperature range. Materials that amplify signals through non-chemical methods could open up new sensing avenues. Here, we present the discovery of a broad-spectrum gas sensor utilizing correlated two-dimensional electron gas at a delta-doped LaAlO3/SrTiO3 interface with LaFeO3. Our study reveals that a back-gating on this two-dimensional electron gas can induce a non-volatile metal to insulator transition, which consequently can activate the two-dimensional electron gas to sensitively and quantitatively probe very broad gas species, no matter whether they are polar, non-polar, or inert gases. Different gas species cause resistance change at their sublimation or boiling temperature and a well-defined phase transition angle can quantitatively determine their partial pressures. Such unique correlated two-dimensional electron gas sensor is not affected by gas mixtures and maintains a wide operating temperature range. Furthermore, its readout is a simple measurement of electric resistance change, thus providing a very low-cost and high-efficient broad-spectrum sensing technique.

15.
Chem Commun (Camb) ; 58(15): 2488-2491, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35084422

RESUMO

We synthesized Cu single atoms embedded in a N-doped porous carbon catalyst with a high Faradaic efficiency of 93.5% at -0.50 V (vs. RHE) for CO2 reduction to CO. The evolution of Cu single-atom sites to nanoclusters of about 1 nm was observed after CO2 reduction at a potential lower than -0.30 V (vs. RHE). The DFT calculation indicates that Cu nanoclusters improve the CO2 activation and the adsorption of intermediate *COOH, thus exhibiting higher catalytic activity than CuNx sites. The structural instability observed in this study helps in understanding the actual active sites of Cu single atom catalysts for CO2 reduction.

16.
J Colloid Interface Sci ; 563: 27-32, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31865045

RESUMO

Alkaline direct hydrazine (N2H4) fuel cells (DHFCs) are considered one of the most promising liquid-fed fuel cells because of their high energy density, high theoretical voltage, and zero carbon dioxide (CO2) emissions. However, the lack of a suitable electrolyte membrane impedes the further development of alkaline DHFC. Herein, a potassium hydroxide (KOH)-doped polybenzimidazole (PBI) membrane is applied in alkaline DHFCs, and the detailed operating conditions are investigated for the first time. With optimal KOH and N2H4 concentrations in the anolyte, membrane thickness, and cathode gas humidity, the DHFC gives a peak power density of 0.708 W cm-2. The results of this study demonstrate the promising application of PBI membranes in DHFC and provide a platform to evaluate the performance of catalysts synthesized for DHFC.

17.
ACS Appl Mater Interfaces ; 12(10): 11375-11387, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32068386

RESUMO

Adipose-derived stem cell (ASC) spheroids exhibit enhanced angiogenic efficacy toward ischemia treatment. Thus, it is necessary to develop an all-in-one platform that enables efficient spheroid production, collection, and injectable implantation in vivo. The present study fabricated a poly(l-glutamic acid) (PLGA)-based porous hydrogel that can not only produce ASC spheroids but also conveniently collect spheroids for in vivo implantation via minimally invasive injection to treat hind limb ischemia. PLGA was cross-linked with cystamine (Cys), which contains disulfide bonds, to form a porous hydrogel that could realize "gel-sol" transition by the reduction effect of glutathione (GSH). For one thing, it was found that the introduction of the disulfide bond in the PLGA hydrogel promoted cellular adhesion via combining fibronectin, preventing the formation of spheroids, while the introduction of polyethylene glycol monomethyl ether (mPEG) could disturb the effect of the disulfide bond on cellular adhesion, supporting spheroid formation inside the porous hydrogel. For another, the porous hydrogel transferred into a syringe could turn into liquid polymer solution within about 40 min for collection of the produced spheroids and in vivo injection. In addition, because of the lubrication of polymer solution, the spheroids were protected during the injection of the spheroids/polymer suspensoid through a 25G syringe needle, avoiding damages from shearing. After the in vivo injection, the enhanced paracrine secretion of ASC spheroids resulted in promoted angiogenesis and muscle regeneration, exhibiting obvious therapeutic effect on limb ischemia in mice after 21 days. At the same time, PLGA-based material exhibited well-performed biocompatibility in vivo.


Assuntos
Indutores da Angiogênese , Hidrogéis , Isquemia/metabolismo , Células-Tronco Mesenquimais , Esferoides Celulares , Adipatos , Tecido Adiposo/citologia , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Animais , Células Cultivadas , Cistamina , Dissulfetos , Membro Posterior/irrigação sanguínea , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Transição de Fase , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
18.
ACS Appl Mater Interfaces ; 11(13): 12570-12577, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30855934

RESUMO

Dual-ion battery complements lithium-ion batteries in terms of the use of inexpensive materials and ease to construct cells. To improve the safety and energy density of dual-ion battery, in this paper, a novel MnO-graphite dual-ion battery is reported for the first time. Microporous MnO materials are used as anode, which exhibits a low conversion potential and a low voltage hysteresis. The MnO-graphite dual-ion battery can deliver a capacity of 104 mAh g-1 at 0.5C and exhibits good rate performances and cycling stability (capacity retention >93% after 300 cycles). A mechanism is proposed to explain the irreversibility in capacity during the initial cycle by using operando X-ray diffraction in combination with online electrochemical mass spectrometry and electrochemical impedance spectroscopy.

19.
ChemSusChem ; 12(17): 3988-3995, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31270948

RESUMO

The electrochemical CO2 reduction reaction (CO2 RR) in aqueous solution inevitably competes with the hydrogen evolution reaction (HER), which results in a difficult separation of the complex products. In this study, a Fe/N/C catalyst derived from Fe(SCN)3 (labelled SMFeSCN) revealed a high CO Faradaic efficiency (FE) of 99 % at a moderate overpotential of 0.44 V. CO2 RR and HER competed with each other for active sites on Fe/N/C. The high FE for CO production originated from the high content of micropores on the catalyst, which could suppress the side reactions by increasing CO2 uptake. More importantly, excellent tolerance towards metal-ion impurities was demonstrated in Fe/N/C, which was primarily owing to the high specific surface area with scattered active sites. Thus, the Fe/N/C catalyst showed good activity for CO2 RR without influencing the electrolyte purity, thus raising the possibility of its practical application.

20.
ChemSusChem ; 11(5): 881-887, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29446547

RESUMO

Cu is a unique catalyst for CO2 electroreduction, since it can catalyze CO2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO2 is considered to facilitate the activity and selectivity of CO2 reduction. Herein, a new strategy is presented for CO2 reduction with improved C2 H4 selectivity on a Cu catalyst by using CO2 capture materials as the support at ambient pressure. N-doped carbon (Nx C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO2 uptake capacity of Nx C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/Nx C catalysts exhibit a considerably higher C2 H4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C2 H4 faradaic efficiency and CO2 uptake capacity of the supports for CuO. The local high CO2 concentration near Cu catalysts, created by CO2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C2 H4 . This study demonstrates that pairing Cu catalysts with CO2 capture supports is a promising approach for designing highly effective CO2 reduction electrocatalysts.


Assuntos
Dióxido de Carbono/química , Cobre/química , Técnicas Eletroquímicas/métodos , Álcoois/síntese química , Ácidos Carboxílicos/síntese química , Catálise , Etilenos/química , Hidrocarbonetos/síntese química , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA