Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(24): e102155, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31721250

RESUMO

Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.


Assuntos
Proliferação de Células , Mitocôndrias/metabolismo , Biogênese de Organelas , Transdução de Sinais , Animais , Ciclo do Ácido Cítrico/fisiologia , Escherichia coli/metabolismo , Feminino , Metabolômica , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteômica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(37): 23113-23124, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859761

RESUMO

Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in "at risk" patients with identified Gly203Ser gene mutations.


Assuntos
Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/genética , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos/farmacologia , Troponina I/metabolismo
3.
J Mol Cell Cardiol ; 172: 100-108, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041287

RESUMO

Cardiovascular disease continues to be the leading health burden worldwide and with the rising rates in obesity and type II diabetes and ongoing effects of long COVID, it is anticipated that the burden of cardiovascular morbidity and mortality will increase. Calcium is essential to cardiac excitation and contraction. The main route for Ca2+ influx is the L-type Ca2+ channel (Cav1.2) and embryos that are homozygous null for the Cav1.2 gene are lethal at day 14 postcoitum. Acute changes in Ca2+ influx through the channel contribute to arrhythmia and sudden death, and chronic increases in intracellular Ca2+ contribute to pathological hypertrophy and heart failure. We use a multidisciplinary approach to study the regulation of the channel from the molecular level through to in vivo CRISPR mutant animal models. Here we describe some examples of our work from over 2 decades studying the role of the channel under physiological and pathological conditions. Our single channel analysis of purified human Cav1.2 protein in proteoliposomes has contributed to understanding direct molecular regulation of the channel including identifying the critical serine involved in the "fight or flight" response. Using the same approach we identified the cysteine responsible for altered function during oxidative stress. Chronic activation of the L-type Ca2+ channel during oxidative stress occurs as a result of persistent glutathionylation of the channel that contributes to the development of hypertrophy. We describe for the first time that activation of the channel alters mitochondrial function (and energetics) on a beat-to-beat basis via movement of cytoskeletal proteins. In translational studies we have used this response to "report" mitochondrial function in models of cardiomyopathy and to test efficacy of novel therapies to prevent cardiomyopathy.


Assuntos
Canais de Cálcio Tipo L , Cardiomiopatias , Animais , Humanos , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Cardiomiopatias/metabolismo , COVID-19 , Diabetes Mellitus Tipo 2/metabolismo , Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , Síndrome de COVID-19 Pós-Aguda
4.
J Physiol ; 599(14): 3495-3512, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32822065

RESUMO

Sarcomeric gene mutations are associated with the development of hypertrophic cardiomyopathy (HCM). Current drug therapeutics for HCM patients are effective in relieving symptoms, but do not prevent or reverse disease progression. Moreover, due to heterogeneity in the clinical manifestations of the disease, patients experience variable outcomes in response to therapeutics. Mechanistically, alterations in calcium handling, sarcomeric disorganization, energy metabolism and contractility participate in HCM disease progression. While some similarities exist, each mutation appears to lead to mutation-specific pathophysiology. Furthermore, these alterations may precede or proceed development of the pathology. This review assesses the efficacy of HCM therapeutics from studies performed in animal models of HCM and human clinical trials. Evidence suggests that a preventative rather than corrective therapeutic approach may be more efficacious in the treatment of HCM. In addition, a clear understanding of mutation-specific mechanisms may assist in informing the most effective therapeutic mode of action.


Assuntos
Cardiomiopatia Hipertrófica , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Metabolismo Energético , Humanos , Mutação , Sarcômeros/metabolismo
5.
J Physiol ; 599(14): 3449-3462, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32710561

RESUMO

The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.


Assuntos
Genoma Mitocondrial , Biossíntese de Proteínas , Animais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ribossomos/metabolismo
6.
Pflugers Arch ; 472(1): 61-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31822999

RESUMO

Neuronal nitric oxide synthase (nNOS) is considered a regulator of Cav1.2 L-type Ca2+ channels and downstream Ca2+ cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Cav1.2 channels. This gives rise to a diminished Ca2+ release from the sarcoplasmic reticulum, and finally reduced contractility. Here, we report that nNOS inhibitor substances significantly increase intracellular Ca2+ transients in ventricular cardiomyocytes derived from adult mouse and rat hearts. This is consistent with an inhibitory effect of nNOS/NO activity on Ca2+ cycling and contractility. Whole cell currents through L-type Ca2+ channels in rodent myocytes, on the other hand, were not substantially affected by the application of various NOS inhibitors, or application of a NO donor substance. Moreover, the presence of NO donors had no effect on the single-channel open probability of purified human Cav1.2 channel protein reconstituted in artificial liposomes. These results indicate that nNOS/NO activity does not directly modify Cav1.2 channel function. We conclude that-against the currently prevailing view-basal Cav1.2 channel activity in ventricular cardiomyocytes is not substantially regulated by nNOS activity and NO. Hence, nNOS/NO inhibition of Ca2+ cycling and contractility occurs independently of direct regulation of Cav1.2 channels by NO.


Assuntos
Potenciais de Ação , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feminino , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ornitina/análogos & derivados , Ornitina/farmacologia , Ratos , Ratos Sprague-Dawley
7.
EMBO Rep ; 19(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30126926

RESUMO

The molecular roles of the dually targeted ElaC domain protein 2 (ELAC2) during nuclear and mitochondrial RNA processing in vivo have not been distinguished. We generated conditional knockout mice of ELAC2 to identify that it is essential for life and its activity is non-redundant. Heart and skeletal muscle-specific loss of ELAC2 causes dilated cardiomyopathy and premature death at 4 weeks. Transcriptome-wide analyses of total RNAs, small RNAs, mitochondrial RNAs, and miRNAs identified the molecular targets of ELAC2 in vivo We show that ELAC2 is required for processing of tRNAs and for the balanced maintenance of C/D box snoRNAs, miRNAs, and a new class of tRNA fragments. We identify that correct biogenesis of regulatory non-coding RNAs is essential for both cytoplasmic and mitochondrial protein synthesis and the assembly of mitochondrial ribosomes and cytoplasmic polysomes. We show that nuclear tRNA processing is required for the balanced production of snoRNAs and miRNAs for gene expression and that 3' tRNA processing is an essential step in the production of all mature mitochondrial RNAs and the majority of nuclear tRNAs.


Assuntos
Endorribonucleases/genética , Proteínas de Neoplasias/genética , RNA Mitocondrial/genética , RNA não Traduzido/genética , Animais , Núcleo Celular/genética , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/genética , RNA não Traduzido/classificação , RNA não Traduzido/isolamento & purificação
8.
Nanomedicine ; 29: 102264, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32659322

RESUMO

Therapeutic approaches for myocardial ischemia-reperfusion injury (MI) have been ineffective due to limited bioavailability and poor specificity. We have previously shown that a peptide that targets the α-interaction domain of the cardiac L-type calcium channel (AID-peptide) attenuates MI when tethered to transactivator of transcription sequence (TAT) or spherical nanoparticles. However some reservations remain regarding use of these delivery platforms due to the relationship with human immunodeficiency virus, off-target effects and toxicity. Here we investigate the use of linear dendronized polymers (denpols) to deliver AID-peptide as a potential MI therapy using in vitro, ex vivo and in vivo models. Optimized denpol-complexed AID-peptide facilitated in vitro cardiac uptake of AID-peptide, and reduced MI. Maximal in vivo cardiac uptake was achieved within the 2 h therapeutic time window for acute myocardial infarction. Importantly, optimized denpol-complexed AID-peptide was not toxic. This platform may represent an alternative therapeutic approach for the prevention of MI.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Coração/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Nanopartículas/química , Animais , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo L/efeitos dos fármacos , Modelos Animais de Doenças , Cobaias , Coração/fisiopatologia , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Polímeros/química , Polímeros/farmacologia
9.
Heart Lung Circ ; 29(11): 1588-1595, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32839116

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of death in Australia. Investment in research solutions has been demonstrated to yield health and a 9.8-fold return economic benefit. The sector, however, is severely challenged with success rates of traditional peer-reviewed funding in decline. Here, we aimed to understand the perceived challenges faced by the cardiovascular workforce in Australia prior to the COVID-19 pandemic. METHODS: We used an online survey distributed across Australian cardiovascular societies/councils, universities and research institutes over a period of 6 months during 2019, with 548 completed responses. Inclusion criteria included being an Australian resident or an Australian citizen who lived overseas, and a current or past student or employee in the field of cardiovascular research. RESULTS: The mean age of respondents was 42±13 years, 47% were male, 85% had a full-time position, and 40% were a group leader or laboratory head. Twenty-three per cent (23%) had permanent employment, and 82% of full-time workers regularly worked >40 hours/week. Sixty-eight per cent (68%) said they had previously considered leaving the cardiovascular research sector. If their position could not be funded in the next few years, a staggering 91% of respondents would leave the sector. Compared to PhD- and age-matched men, women were less likely to be a laboratory head and to feel they had a long-term career path as a cardiovascular researcher, while more women were unsure about future employment and had considered leaving the sector (all p<0.05). Greater job security (76%) and government and philanthropic investment in cardiovascular research (72%) were highlighted by responders as the main changes to current practices that would encourage them to stay. CONCLUSION: Strategic solutions, such as diversification of career pathways and funding sources, and moving from a competitive to a collaborative culture, need to be a priority to decrease reliance on government funding and allow cardiovascular researchers to thrive.


Assuntos
Pesquisa Biomédica , Doenças Cardiovasculares , Infecções por Coronavirus/epidemiologia , Administração Financeira , Pneumonia Viral/epidemiologia , Pesquisadores , Apoio à Pesquisa como Assunto , Recursos Humanos , Adulto , Austrália , Betacoronavirus , Pesquisa Biomédica/economia , Pesquisa Biomédica/organização & administração , Pesquisa Biomédica/tendências , COVID-19 , Emprego/economia , Emprego/psicologia , Feminino , Administração Financeira/métodos , Administração Financeira/organização & administração , Administração Financeira/estatística & dados numéricos , Financiamento Governamental , Humanos , Masculino , Cultura Organizacional , Pandemias , Técnicas de Planejamento , Pesquisadores/economia , Pesquisadores/psicologia , Pesquisadores/estatística & dados numéricos , Apoio à Pesquisa como Assunto/organização & administração , Apoio à Pesquisa como Assunto/tendências , SARS-CoV-2 , Inquéritos e Questionários , Recursos Humanos/estatística & dados numéricos
10.
Biophys J ; 116(12): 2331-2345, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31103236

RESUMO

There is evidence that millimeter waves (MMWs) can have an impact on cellular function, including neurons. Earlier in vitro studies have shown that exposure levels well below the recommended safe limit of 1 mW/cm2 cause changes in the action potential (AP) firing rate, resting potential, and AP pulse shape of sensory neurons in leech preparations as well as alter neuronal properties in rat cortical brain slices; these effects differ from changes induced by direct heating. In this article, we compare the responses of thermosensitive primary nociceptors of the medicinal leech under thermal heating and MMW irradiation (80-170 mW/cm2 at 60 GHz). The results show that MMW exposure causes an almost twofold decrease in the threshold for activation of the AP compared with thermal heating (3.9 ± 0.4 vs. 8.3 ± 0.4 mV, respectively). Our analysis suggests that MMWs-mediated threshold alterations are not caused by the enhancement of voltage-gated sodium and potassium conductance. We propose that the reduction in AP threshold can be attributed to the sensitization of the transient receptor potential vanilloid 1-like receptor in the leech nociceptor. In silico modeling supported our experimental findings. Our results provide evidence that MMW exposure stimulates specific receptor responses that differ from direct thermal heating, fostering the need for additional studies.


Assuntos
Nociceptores/metabolismo , Nociceptores/efeitos da radiação , Ondas de Rádio/efeitos adversos , Canais de Cátion TRPV/metabolismo , Potenciais de Ação/efeitos da radiação , Animais , Sobrevivência Celular/efeitos da radiação , Nociceptores/citologia , Temperatura
11.
Arch Biochem Biophys ; 665: 166-174, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30885674

RESUMO

Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder, characterised by myocyte remodeling, disorganisation of sarcomeric proteins, impaired energy metabolism and altered cardiac contractility. Gene mutations encoding cardiac contractile proteins account for 60% of HCM aetiology. Current drug therapy including L-type calcium channel antagonists, are used to manage symptoms in patients with overt HCM, but no treatment exists that can reverse or prevent the cardiomyopathy. Design of effective drug therapy will require a clear understanding of the early pathophysiological mechanisms of the disease. Numerous studies have investigated specific aspects of HCM pathophysiology. This review brings these findings together, in order to develop a holistic understanding of the early pathophysiological mechanisms of the disease. We focus on gene mutations in cardiac myosin binding protein-C, ß-cardiac myosin heavy chain, cardiac troponin I, and cardiac troponin T, that comprise the majority of all HCM sarcomeric gene mutations. We find that although some similarities exist, each mutation leads to mutation-specific alterations in calcium handling, myofilament calcium sensitivity and mitochondrial metabolic function. This may contribute to the observed clinical phenotypic variability in sarcomeric-related HCM. An understanding of early mutation-specific mechanisms of the disease may provide useful markers of disease progression, and inform therapeutic design.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Troponina T/metabolismo
13.
PLoS Genet ; 11(3): e1005089, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25816300

RESUMO

The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.


Assuntos
Cardiopatias Congênitas/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , Proteínas Ribossômicas/biossíntese , Animais , DNA Mitocondrial/genética , Metabolismo Energético , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Hepatopatias/genética , Hepatopatias/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ribossomos Mitocondriais/patologia , Mutação , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética
14.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 46-54, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28306174

RESUMO

Cardiovascular disease is the leading cause of death in the Western world. The incidence of cardiovascular disease is predicted to further rise with the increase in obesity and diabetes and with the aging population. Even though the survival rate from ischaemic heart disease has improved over the past 30 years, many patients progress to a chronic pathological condition, known as cardiac hypertrophy that is associated with an increase in morbidity and mortality. Reactive oxygen species (ROS) and calcium play an essential role in mediating cardiac hypertrophy. The L-type calcium channel is the main route for calcium influx into cardiac myocytes. There is now good evidence for a direct role for the L-type calcium channel in the development of cardiac hypertrophy. Cysteines on the channel are targets for redox modification and glutathionylation of the channel can modulate the function of the channel protein leading to the onset of pathology. The cysteine responsible for modification of L-type calcium channel function has now been identified. Detailed understanding of the role of cysteines as possible targets during oxidative stress may assist in designing therapy to prevent the development of hypertrophy and heart failure.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Remodelação Ventricular , Animais , Canais de Cálcio Tipo L/química , Cardiomegalia/diagnóstico , Cardiomegalia/fisiopatologia , Cisteína , Humanos , Miócitos Cardíacos/patologia , Oxirredução , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 111(28): E2905-14, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24969422

RESUMO

Duchenne muscular dystrophy is a fatal X-linked disease characterized by the absence of dystrophin. Approximately 20% of boys will die of dilated cardiomyopathy that is associated with cytoskeletal protein disarray, contractile dysfunction, and reduced energy production. However, the mechanisms for altered energy metabolism are not yet fully clarified. Calcium influx through the L-type Ca(2+) channel is critical for maintaining cardiac excitation and contraction. The L-type Ca(2+) channel also regulates mitochondrial function and metabolic activity via transmission of movement of the auxiliary beta subunit through intermediate filament proteins. Here, we find that activation of the L-type Ca(2+) channel is unable to induce increases in mitochondrial membrane potential and metabolic activity in intact cardiac myocytes from the murine model of Duchenne muscular dystrophy (mdx) despite robust increases recorded in wt myocytes. Treatment of mdx mice with morpholino oligomers to induce exon skipping of dystrophin exon 23 (that results in functional dystrophin accumulation) or application of a peptide that resulted in block of voltage-dependent anion channel (VDAC) "rescued" mitochondrial membrane potential and metabolic activity in mdx myocytes. The mitochondrial VDAC coimmunoprecipitated with the L-type Ca(2+) channel. We conclude that the absence of dystrophin in the mdx ventricular myocyte leads to impaired functional communication between the L-type Ca(2+) channel and mitochondrial VDAC. This appears to contribute to metabolic inhibition. These findings provide new mechanistic and functional insight into cardiomyopathy associated with Duchenne muscular dystrophy.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Distrofina/metabolismo , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Distrofina/antagonistas & inibidores , Distrofina/genética , Éxons , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Membranas Mitocondriais/patologia , Morfolinos/genética , Morfolinos/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Miocárdio , Miócitos Cardíacos/patologia
16.
J Physiol ; 599(14): 3447-3448, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34263447

Assuntos
Mitocôndrias , Humanos
17.
J Physiol ; 594(14): 4051-70, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27062056

RESUMO

KEY POINTS: Genetic mutations in cardiac troponin I (cTnI) are associated with development of hypertrophic cardiomyopathy characterized by myocyte remodelling, disorganization of cytoskeletal proteins and altered energy metabolism. The L-type Ca(2+) channel is the main route for calcium influx and is crucial to cardiac excitation and contraction. The channel also regulates mitochondrial function in the heart by a functional communication between the channel and mitochondria via the cytoskeletal network. We find that L-type Ca(2+) channel kinetics are altered in cTnI-G203S cardiac myocytes and that activation of the channel causes a significantly greater increase in mitochondrial membrane potential and metabolic activity in cTnI-G203S cardiac myocytes. These responses occur as a result of impaired communication between the L-type Ca(2+) channel and cytoskeletal protein F-actin, involving decreased movement of actin-myosin and block of the mitochondrial voltage-dependent anion channel, resulting in a 'hypermetabolic' mitochondrial state. We propose that L-type Ca(2+) channel antagonists, such as diltiazem, might be effective in reducing the cardiomyopathy by normalizing mitochondrial metabolic activity. ABSTRACT: Genetic mutations in cardiac troponin I (cTnI) account for 5% of families with hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy is associated with disorganization of cytoskeletal proteins and altered energy metabolism. The L-type Ca(2+) channel (ICa-L ) plays an important role in regulating mitochondrial function. This involves a functional communication between the channel and mitochondria via the cytoskeletal network. We investigate the role of ICa-L in regulating mitochondrial function in 25- to 30-week-old cardiomyopathic mice expressing the human disease-causing mutation Gly203Ser in cTnI (cTnI-G203S). The inactivation rate of ICa-L is significantly faster in cTnI-G203S myocytes [cTnI-G203S: τ1  = 40.68 ± 3.22, n = 10 vs. wild-type (wt): τ1  = 59.05 ± 6.40, n = 6, P < 0.05]. Activation of ICa-L caused a greater increase in mitochondrial membrane potential (Ψm , 29.19 ± 1.85%, n = 15 vs. wt: 18.84 ± 2.01%, n = 10, P < 0.05) and metabolic activity (24.40 ± 6.46%, n = 8 vs. wt: 9.98 ± 1.57%, n = 9, P < 0.05). The responses occurred because of impaired communication between ICa-L and F-actin, involving lack of dynamic movement of actin-myosin and block of the mitochondrial voltage-dependent anion channel. Similar responses were observed in precardiomyopathic mice. ICa-L antagonists nisoldipine and diltiazem decreased Ψm to basal levels. We conclude that the Gly203Ser mutation leads to impaired functional communication between ICa-L and mitochondria, resulting in a 'hypermetabolic' state. This might contribute to development of cTnI-G203S cardiomyopathy because the response is present in young precardiomyopathic mice. ICa-L antagonists might be effective in reducing the cardiomyopathy by altering mitochondrial function.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cardiomiopatia Hipertrófica/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Actinas/fisiologia , Animais , Cálcio/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cardiomiopatia Hipertrófica/genética , Citoesqueleto/fisiologia , Diltiazem/farmacologia , Modelos Animais de Doenças , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mutação , Miócitos Cardíacos/fisiologia , Nisoldipino/farmacologia , Superóxidos/metabolismo , Troponina I/genética
18.
J Biol Chem ; 290(3): 1729-42, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25451916

RESUMO

The maintenance of bone homeostasis requires tight coupling between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the precise molecular mechanism(s) underlying the differentiation and activities of these specialized cells are still largely unknown. Here, we identify choline kinase ß (CHKB), a kinase involved in the biosynthesis of phosphatidylcholine, as a novel regulator of bone homeostasis. Choline kinase ß mutant mice (flp/flp) exhibit a systemic low bone mass phenotype. Consistently, osteoclast numbers and activity are elevated in flp/flp mice. Interestingly, osteoclasts derived from flp/flp mice exhibit reduced sensitivity to excessive levels of extracellular calcium, which could account for the increased bone resorption. Conversely, supplementation of cytidine 5'-diphosphocholine in vivo and in vitro, a regimen that bypasses CHKB deficiency, restores osteoclast numbers to physiological levels. Finally, we demonstrate that, in addition to modulating osteoclast formation and function, loss of CHKB corresponds with a reduction in bone formation by osteoblasts. Taken together, these data posit CHKB as a new modulator of bone homeostasis.


Assuntos
Colina Quinase/genética , Mutação , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fosforilcolina/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea , Osso e Ossos/metabolismo , Cálcio/metabolismo , Proliferação de Células , Homeostase , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutagênese , Osteoblastos/citologia , Osteoclastos/citologia , Fenótipo , Microtomografia por Raio-X
19.
Acta Derm Venereol ; 96(6): 774-8, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-26911400

RESUMO

A double-blind randomized controlled trial with a paired split-scar design compared verapamil, an L-type Ca2+ channel antagonist, and triamcinolone for prevention of keloid recurrence after excision. Ca2+ channel blocking activity of verapamil in keloid cells was explored. One keloid was excised per subject and each wound half randomized to receive intralesional injections of triamcinolone (10 mg/ml) or verapamil (2.5 mg/ml) at monthly intervals (4 doses). Interim analysis was performed after 14 subjects were completed. Survival analysis demonstrated significantly higher keloid recurrence with verapamil compared to triamcinolone 12 months post-surgery (log-rank test, p = 0.01) and higher overall risk of recurrence with verapamil (hazard ratio 8.44, 95% CI 1.62-44.05). The study was terminated early according to the stopping guideline (p < 0.05). Verapamil is safe but not as effective as triamcinolone in preventing keloid recurrence after excision. Further study is necessary to determine if clinical response to verapamil is linked to modulation of intracellular Ca2+.


Assuntos
Cicatriz/prevenção & controle , Glucocorticoides/uso terapêutico , Queloide/tratamento farmacológico , Queloide/cirurgia , Triancinolona Acetonida/uso terapêutico , Vasodilatadores/uso terapêutico , Verapamil/uso terapêutico , Adolescente , Adulto , Método Duplo-Cego , Feminino , Glucocorticoides/administração & dosagem , Humanos , Injeções Intralesionais , Masculino , Pessoa de Meia-Idade , Recidiva , Resultado do Tratamento , Triancinolona Acetonida/administração & dosagem , Vasodilatadores/administração & dosagem , Verapamil/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA