Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 106(2): 422-429, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669563

RESUMO

PURPOSE: Patients have reported sensations of seeing light flashes during radiation therapy, even with their eyes closed. These observations have been attributed to either direct excitation of retinal pigments or generation of Cherenkov light inside the eye. Both in vivo human and ex vivo animal eye imaging was used to confirm light intensity and spectra to determine its origin and overall observability. METHODS AND MATERIALS: A time-gated and intensified camera was used to capture light exiting the eye of a patient undergoing stereotactic radiosurgery in real time, thereby verifying the detectability of light through the pupil. These data were compared with follow-up mechanistic imaging of ex vivo animal eyes with thin radiation beams to evaluate emission spectra and signal intensity variation with anatomic depth. Angular dependency of light emission from the eye was also measured. RESULTS: Patient imaging showed that light generation in the eye during radiation therapy can be captured with a signal-to-noise ratio of 68. Irradiation of ex vivo eye samples confirmed that the spectrum matched that of Cherenkov emission and that signal intensity was largely homogeneous throughout the entire eye, from the cornea to the retina, with a slight maximum near 10 mm depth. Observation of the signal external to the eye was possible through the pupil from 0° to 90°, with a detected emission near 2500 photons per millisecond (during peak emission of the ON cycle of the pulsed delivery), which is over 2 orders of magnitude higher than the visible detection threshold. CONCLUSIONS: By quantifying the spectra and magnitude of the signal, we now have direct experimental observations that Cherenkov light is generated in the eye during radiation therapy and can contribute to perceived light flashes. Furthermore, this technique can be used to further study and measure phosphenes in the radiation therapy clinic.


Assuntos
Luz , Fenômenos Fisiológicos Oculares/efeitos da radiação , Radiocirurgia , Razão Sinal-Ruído , Animais , Humanos , Neoplasias Meníngeas/radioterapia , Meningioma/radioterapia , Pupila/fisiologia , Suínos
2.
Nat Biotechnol ; 24(2): 210-5, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429149

RESUMO

As the fastest growing class of therapeutic proteins, monoclonal antibodies (mAbs) represent a major potential drug class. Human antibodies are glycosylated in their native state and all clinically approved mAbs are produced by mammalian cell lines, which secrete mAbs with glycosylation structures that are similar, but not identical, to their human counterparts. Glycosylation of mAbs influences their interaction with immune effector cells that kill antibody-targeted cells. Here we demonstrate that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms. Glycoengineered P. pastoris provides a general platform for producing recombinant antibodies with human N-glycosylation.


Assuntos
Anticorpos Monoclonais/biossíntese , Melhoramento Genético/métodos , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Pichia/genética , Pichia/metabolismo , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/genética , Glicosilação , Humanos , Proteínas Recombinantes/biossíntese
3.
Int J Radiat Oncol Biol Phys ; 64(4): 1211-20, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16504761

RESUMO

PURPOSE: To compensate for photosensitizer uptake variation in photodynamic therapy (PDT), via control of delivered light dose through photodynamic dose calculation based on online dosimetry of photosensitizer in tissue before treatment. METHODS AND MATERIALS: Photosensitizer verteporfin was quantified via multiple fluorescence microprobe measurements immediately before treatment. To compensate individual PDT treatments, photodynamic doses were calculated on an individual animal basis, by matching the light delivered to provide an equal photosensitizer dose multiplied by light dose. This was completed for the lower quartile, median, and upper quartile of the photosensitizer distribution. PDT-induced tumor responses were evaluated by the tumor regrowth assay. RESULTS: Verteporfin uptake varied considerably among tumors and within a tumor. The coefficient of variation in the surviving fraction was found significantly decreased in groups compensated to the lower quartile (CL-PDT), the median (CM-PDT), and the upper quartile (CU-PDT) of photosensitizer distribution. The CL-PDT group was significantly less effective compared with NC-PDT (Noncompensated PDT), CM-PDT, and CU-PDT treatments. No significant difference in effectiveness was observed between NC-PDT, CM-PDT, and CU-PDT treatment groups. CONCLUSIONS: This research suggests that accurate quantification of tissue photosensitizer levels and subsequent adjustment of light dose will allow for reduced subject variation and improved treatment consistency.


Assuntos
Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/farmacocinética , Algoritmos , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Terapia a Laser , Masculino , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/administração & dosagem , Porfirinas/efeitos da radiação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Doses de Radiação , Ratos , Verteporfina
4.
Proc SPIE Int Soc Opt Eng ; 93112015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25914500

RESUMO

Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill & finish, toxicity testing, and early phase clinical trials with image guidance.

5.
Science ; 313(5792): 1441-3, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16960007

RESUMO

Yeast is a widely used recombinant protein expression system. We expanded its utility by engineering the yeast Pichia pastoris to secrete human glycoproteins with fully complex terminally sialylated N-glycans. After the knockout of four genes to eliminate yeast-specific glycosylation, we introduced 14 heterologous genes, allowing us to replicate the sequential steps of human glycosylation. The reported cell lines produce complex glycoproteins with greater than 90% terminal sialylation. Finally, to demonstrate the utility of these yeast strains, functional recombinant erythropoietin was produced.


Assuntos
Eritropoetina/metabolismo , Pichia/genética , Engenharia de Proteínas , Sialoglicoproteínas/biossíntese , Animais , Linhagem Celular , Clonagem Molecular , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Eritropoetina/química , Eritropoetina/genética , Vetores Genéticos , Glicosilação , Humanos , Pichia/metabolismo , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Ácidos Siálicos/metabolismo , Sialoglicoproteínas/química , Sialoglicoproteínas/genética , Transformação Genética
6.
Med Image Comput Comput Assist Interv ; 1496: 743-752, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26317118

RESUMO

Registration error resulting from intraoperative brain shift due to applied surgical loads has long been recognized as one of the most challenging problems in the field of frameless stereotactic neurosurgery. To address this problem, we have developed a 3-dimensional finite element model of the brain and have begun to quantify its predictive capability in an in vivo porcine model. Previous studies have shown that we can predict the average total displacement within 15% and 6.6% error using intraparenchymal and temporal deformation sources, respectively, under relatively simple model assumptions. In this paper, we present preliminary results using a heterogeneous model with an expanding temporally located mass and show that we are capable of predicting an average total displacement to 5.7% under similar model initial and boundary conditions. We also demonstrate that our approach can be viewed as having the capability of recapturing approximately 75% of the registration inaccuracy that may be generated by preoperative-based image-guided neurosurgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA