Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Hippocampus ; 34(1): 29-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961834

RESUMO

Dysfunction of the endosomal-lysosomal network is a notable feature of Alzheimer's disease (AD) pathology. Dysfunctional endo-lysosomal vacuoles accumulate in dystrophic neurites surrounding amyloid ß (Aß) plaques and may be involved in the pathogenesis and progression of Aß aggregates. Trafficking and thus maturation of these dysfunctional vacuoles is disrupted in the vicinity of Aß plaques. Transmembrane protein 55B (TMEM55B), also known as phosphatidylinositol-4,5-bisphosphate 4-phosphatase 1 (PIP4P1) is an endo-lysosomal membrane protein that is necessary for appropriate trafficking of endo-lysosomes. The present study tested whether overexpression of TMEM55B in the hippocampus could prevent plaque-associated axonal accumulation of dysfunctional endo-lysosomes, reduce Aß plaque load, and prevent hippocampal-dependent learning and memory deficits in the 5XFAD mouse models of Aß plaque pathology. Immunohistochemical analyses revealed a modest but significant reduction in the accumulation of endo-lysosomes in dystrophic neurites surrounding Aß plaques, but there was no change in hippocampal-dependent memory or plaque load. Overall, these data indicate a potential role for TMEM55B in reducing endo-lysosomal dysfunction during AD-like Aß pathology.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Transtornos da Memória , Camundongos Transgênicos , Placa Amiloide/metabolismo
2.
J Neurosci Res ; 99(1): 141-162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31997405

RESUMO

Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Animais , Humanos
3.
J Neurochem ; 147(1): 24-39, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29806693

RESUMO

Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-ß plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-ß synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN over-expression on neuronal gene expression in vivo. We found dramatic transcriptional down-regulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to down-regulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Read the Editorial Highlight for this article on page 8.


Assuntos
Doença de Alzheimer/genética , Calcineurina/genética , Neurônios/metabolismo , Doença de Alzheimer/patologia , Animais , Biologia Computacional , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Neurônios/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sinapses/metabolismo , Ativação Transcricional
4.
J Neuroinflammation ; 15(1): 269, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30227881

RESUMO

BACKGROUND: Misfolding of microtubule-associated protein tau (MAPT) within neurons into neurofibrillary tangles is an important pathological feature of Alzheimer's disease (AD). Tau pathology correlates with cognitive decline in AD and follows a stereotypical anatomical course; several recent studies indicate that tau pathology spreads inter-neuronally via misfolded tau "seeds." Previous research has focused on neurons as the source of these tau seeds. However, recent studies as well as the data contained herein suggest that microglia, the resident immune cells of the central nervous system, play a direct role in the spread of tau pathology. METHODS: Primary adult microglia were isolated from human AD cases and the rTg4510 tauopathy mouse model and used for analysis of gene expression, tau protein by Simoa technology, and quantification of tau seeding using a highly sensitive fluorescence resonance energy transfer (FRET) biosensing cell line for tau seeding and aggregation. RESULTS: Here, we show that microglia isolated from both human tauopathy and AD cases and the rTg4510 tauopathy mouse model stably contain tau seeds, despite not synthesizing any tau. Microglia releases these tau seeds in vitro into their conditioned media (CM). This suggests that microglia have taken up tau but are incapable of entirely neutralizing its seeding activity. Indeed, when in vitro microglia are given media containing tau seeds, they reduce (but do not eliminate) tau seeding. When microglia are treated with inflammagens such as lipopolysaccharide (LPS), interleukin-1ß (IL1ß), tumor necrosis factor α (TNFα), or amyloid-ß, their ability to reduce tau seeding is unchanged and these factors do not induce seeding activity on their own. CONCLUSIONS: Overall, these data suggest that microglia have a complex role: they are capable of taking up and breaking down seed competent tau, but do so inefficiently and could therefore potentially play a role in the spread of tau pathology.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Regulação da Expressão Gênica/genética , Microglia/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Emaranhados Neurofibrilares , Neurônios/metabolismo , Proteínas tau/genética
5.
J Neuroinflammation ; 15(1): 311, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413160

RESUMO

BACKGROUND: Activation of inflammation pathways in the brain occurs in Alzheimer's disease and may contribute to the accumulation and spread of pathological proteins including tau. The goal of this study was to identify how changes in microglia, a key inflammatory cell type, may contribute to tau protein accumulation and pathology-associated changes in immune and non-immune cell processes such as neuronal degeneration, astrocyte physiology, cytokine expression, and blood vessel morphology. METHODS: We used PLX3397 (290 mg/kg), a colony-stimulating factor receptor 1 (CSF1R) inhibitor, to reduce the number of microglia in the brains of a tau-overexpressing mouse model. Mice were fed PLX3397 in chow or a control diet for 3 months beginning at 12 months of age and then were subsequently analyzed for changes in blood vessel morphology by in vivo two-photon microscopy and tissues were collected for biochemistry and histology. RESULTS: PLX3397 reduced microglial numbers by 30% regardless of genotype compared to control diet-treated mice. No change in tau burden, cortical atrophy, blood vessels, or astrocyte activation was detected. All Tg4510 mice were observed to have an increased in "disease-associated" microglial gene expression, but PLX3397 treatment did not reduce expression of these genes. Surprisingly, PLX3397 treatment resulted in upregulation of CD68 and Tgf1ß. CONCLUSIONS: Manipulating microglial activity may not be an effective strategy to combat tau pathological lesions. Higher doses of PLX3397 may be required or earlier intervention in the disease course. Overall, this indicates a need for a better understanding of specific microglial changes and their relation to the disease process.


Assuntos
Envelhecimento , Microglia/patologia , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Aminopiridinas/farmacologia , Animais , Vasos Sanguíneos/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Mutação/genética , Pirróis/farmacologia , RNA Mensageiro/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Tauopatias/genética
6.
J Neuroinflammation ; 12: 56, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25888781

RESUMO

BACKGROUND: Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation. METHODS: The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. RESULTS: LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca(+2) uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. CONCLUSIONS: Taken together, these data indicate that Ca(+2) dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca(+2) channels are dysregulated during chronic neuroinflammation. Ca(+2)-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca(+2) dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Encefalite/complicações , Encefalite/patologia , Transtornos da Memória/etiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Complexo Relacionado com a AIDS/metabolismo , Análise de Variância , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/genética , Doença Crônica , Dantroleno/uso terapêutico , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Relaxantes Musculares Centrais/uso terapêutico , Nimodipina/uso terapêutico , Ratos , Ratos Endogâmicos F344 , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Memória Espacial/efeitos dos fármacos
7.
J Neuroinflammation ; 12: 63, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25889938

RESUMO

The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.


Assuntos
Envelhecimento , Encefalite/complicações , Encefalite/patologia , Hipocampo/metabolismo , Insulina/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Análise de Variância , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Proteína Quinase C/metabolismo , Ratos , Ratos Endogâmicos F344 , Tempo de Reação/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
8.
Adv Neurobiol ; 37: 263-286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39207697

RESUMO

Microglia are best known as the resident phagocytes of the central nervous system (CNS). As a resident brain immune cell population, microglia play key roles during the initiation, propagation, and resolution of inflammation. The discovery of resident adaptive immune cells in the CNS has unveiled a relationship between microglia and adaptive immune cells for CNS immune-surveillance during health and disease. The interaction of microglia with elements of the peripheral immune system and other CNS resident cells mediates a fine balance between neuroprotection and tissue damage. In this chapter, we highlight the innate immune properties of microglia, with a focus on how pattern recognition receptors, inflammatory signaling cascades, phagocytosis, and the interaction between microglia and adaptive immune cells regulate events that initiate an inflammatory or neuroprotective response within the CNS that modulates immune-mediated disease exacerbation or resolution.


Assuntos
Imunidade Inata , Microglia , Fagocitose , Receptores de Reconhecimento de Padrão , Humanos , Microglia/imunologia , Microglia/metabolismo , Animais , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Inflamação/imunologia , Transdução de Sinais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Imunidade Adaptativa/imunologia
9.
Brain Pathol ; 34(4): e13267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724175

RESUMO

Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods. The present study aims to overcome these limitations with novel combinations of histologic techniques to characterize the sialylation landscape of O- and N-linked glycans in autopsy-confirmed AD post-mortem brain tissue. Sialylated glycans facilitate important cellular functions including cell-to-cell interaction, cell migration, cell adhesion, immune regulation, and membrane excitability. Previous studies have not investigated both N- and O-linked sialylated glycans in neurodegeneration. In this study, the location and distribution of sialylated glycans were evaluated in three brain regions (frontal cortex, hippocampus, and cerebellum) from 10 AD cases using quantitative digital pathology techniques. Notably, we found significantly greater N-sialylation of the Aß plaque microenvironment compared with O-sialylation. Plaque-associated microglia displayed the most intense N-sialylation proximal to plaque pathology. Further analyses revealed distinct differences in the levels of N- and O-sialylation between cored and diffuse Aß plaque morphologies. Interestingly, phosphorylated tau pathology led to a slight increase in N-sialylation and no influence of O-sialylation in these AD brains. Confirming our previous observations in mice with novel histologic approach, these findings support microglia sialylation appears to have a relationship with AD protein aggregates while providing potential targets for therapeutic strategies.


Assuntos
Doença de Alzheimer , Encéfalo , Microglia , Placa Amiloide , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Microglia/metabolismo , Microglia/patologia , Glicosilação , Masculino , Feminino , Idoso , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Idoso de 80 Anos ou mais , Encéfalo/patologia , Encéfalo/metabolismo , Polissacarídeos/metabolismo , Pessoa de Meia-Idade
10.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766008

RESUMO

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA