Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002445, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163325

RESUMO

Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.


Assuntos
Antagonistas da Serotonina , Serotonina , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Receptor 5-HT1B de Serotonina , Antagonistas da Serotonina/farmacologia , Macaca , Animais
2.
J Neurosci ; 43(39): 6619-6627, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37620158

RESUMO

Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.


Assuntos
Canais Iônicos , Primatas , Animais , Masculino , Reprodutibilidade dos Testes , Imagem Multimodal , Macaca
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493677

RESUMO

The common marmoset has enormous promise as a nonhuman primate model of human brain functions. While resting-state functional MRI (fMRI) has provided evidence for a similar organization of marmoset and human cortices, the technique cannot be used to map the functional correspondences of brain regions between species. This limitation can be overcome by movie-driven fMRI (md-fMRI), which has become a popular tool for noninvasively mapping the neural patterns generated by rich and naturalistic stimulation. Here, we used md-fMRI in marmosets and humans to identify whole-brain functional correspondences between the two primate species. In particular, we describe functional correlates for the well-known human face, body, and scene patches in marmosets. We find that these networks have a similar organization in both species, suggesting a largely conserved organization of higher-order visual areas between New World marmoset monkeys and humans. However, while face patches in humans and marmosets were activated by marmoset faces, only human face patches responded to the faces of other animals. Together, the results demonstrate that higher-order visual processing might be a conserved feature between humans and New World marmoset monkeys but that small, potentially important functional differences exist.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Callithrix/fisiologia , Face/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Percepção Visual/fisiologia , Adulto , Animais , Encéfalo/anatomia & histologia , Face/anatomia & histologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794012

RESUMO

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Assuntos
Núcleo Caudado , Motivação , Animais , Núcleo Caudado/fisiologia , Objetivos , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Recompensa
5.
Neuroimage ; 272: 120035, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948281

RESUMO

The default-mode network (DMN) is a distributed functional brain system integral for social and higher-order cognition in humans with implications in a myriad of neuropsychological disorders. In this study, we compared the functional architecture of the DMN between humans and marmosets to assess their similarities and differences using joint gradients. This approach permits simultaneous large-scale mapping of functional systems across the cortex of humans and marmosets, revealing evidence of putative homologies between them. In doing so, we find that the DMN architecture of the marmoset exhibits differences along its anterolateral-posterior axis. Specifically, the anterolateral node of the DMN (dorsolateral prefrontal cortex) displayed weak connections and inconsistent connection topographies as compared to its posterior DMN-nodes (posterior cingulate and posterior parietal cortices). We also present evidence that the marmoset medial prefrontal cortex and temporal lobe areas correspond to other macroscopical distributed functional systems that are not part of the DMN. Given the importance of the marmoset as a pre-clinical primate model for higher-order cognitive functioning and the DMN's relevance to cognition, our results suggest that the marmoset may lack the capacity to integrate neural information to subserve cortical dynamics that are necessary for supporting diverse cognitive demands.


Assuntos
Mapeamento Encefálico , Callithrix , Animais , Humanos , Mapeamento Encefálico/métodos , Rede de Modo Padrão , Imageamento por Ressonância Magnética/métodos , Encéfalo , Vias Neurais
6.
Cereb Cortex ; 32(9): 1965-1977, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34515315

RESUMO

Frontoparietal networks contribute to complex cognitive functions in humans and macaques, such as working memory, attention, task-switching, response suppression, grasping, reaching, and eye movement control. However, there has been no comprehensive examination of the functional organization of frontoparietal networks using functional magnetic resonance imaging in the New World common marmoset monkey (Callithrix jacchus), which is now widely recognized as a powerful nonhuman primate experimental animal. In this study, we employed hierarchical clustering of interareal blood oxygen level-dependent signals to investigate the hypothesis that the organization of the frontoparietal cortex in the marmoset follows the organizational principles of the macaque frontoparietal system. We found that the posterior part of the lateral frontal cortex (premotor regions) was functionally connected to the anterior parietal areas, while more anterior frontal regions (frontal eye field [FEF]) were connected to more posterior parietal areas (the region around the lateral intraparietal area [LIP]). These overarching patterns of interareal organization are consistent with a recent macaque study. These findings demonstrate parallel frontoparietal processing streams in marmosets and support the functional similarities of FEF-LIP and premotor-anterior parietal pathways between marmoset and macaque.


Assuntos
Callithrix , Imageamento por Ressonância Magnética , Animais , Mapeamento Encefálico , Callithrix/fisiologia , Córtex Cerebral , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Macaca , Vigília
7.
Biosci Biotechnol Biochem ; 87(12): 1523-1531, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37709570

RESUMO

We focused on Piper longum L., a herbal drug produced in Myanmar, which has a renoprotective effect. Thus, we attempted to isolate and identify compounds that enhance the expression of the ABCG2 gene from the aerial parts of the plant except for the fruit. Among the various P. longum extracts, we isolated and identified the components. Using Caco-2 cells, the hABCG2 mRNA expression-enhancing effects of the isolated compounds were compared with the positive reference compound (3-methylcholanthrene [3MC]) using real-time polymerase chain reaction. Six compounds were isolated and identified from the methanol extract of P. longum. Among the isolated compounds, licarin A and neopomatene had lower toxicity and higher hABCG2 mRNA expression-enhancing effects in Caco-2 cells. Suppression of hAhR expression by siRNA reduced the activity of licarin A and neopomatene, as well as the hAhR agonist 3MC, suggesting that these 2 compounds may act as hAhR agonists to promote hABCG2 expression.


Assuntos
Lignanas , Piper , Humanos , Extratos Vegetais/farmacologia , Células CACO-2 , Lignanas/farmacologia , Expressão Gênica , RNA Mensageiro/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias
8.
Proc Natl Acad Sci U S A ; 117(35): 21681-21689, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817555

RESUMO

With the medial frontal cortex (MFC) centrally implicated in several major neuropsychiatric disorders, it is critical to understand the extent to which MFC organization is comparable between humans and animals commonly used in preclinical research (namely rodents and nonhuman primates). Although the cytoarchitectonic structure of the rodent MFC has mostly been conserved in humans, it is a long-standing question whether the structural analogies translate to functional analogies. Here, we probed this question using ultra high field fMRI data to compare rat, marmoset, and human MFC functional connectivity. First, we applied hierarchical clustering to intrinsically define the functional boundaries of the MFC in all three species, independent of cytoarchitectonic definitions. Then, we mapped the functional connectivity "fingerprints" of these regions with a number of different brain areas. Because rats do not share cytoarchitectonically defined regions of the lateral frontal cortex (LFC) with primates, the fingerprinting method also afforded the unique ability to compare the rat MFC and marmoset LFC, which have often been suggested to be functional analogs. The results demonstrated remarkably similar intrinsic functional organization of the MFC across the species, but clear differences between rodent and primate MFC whole-brain connectivity. Rat MFC patterns of connectivity showed greatest similarity with premotor regions in the marmoset, rather than dorsolateral prefrontal regions, which are often suggested to be functionally comparable. These results corroborate the viability of the marmoset as a preclinical model of human MFC dysfunction, and suggest divergence of functional connectivity between rats and primates in both the MFC and LFC.


Assuntos
Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Evolução Biológica , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Callithrix/anatomia & histologia , Conectoma/métodos , Feminino , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Ratos , Ratos Wistar
9.
Neuroimage ; 252: 119030, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217206

RESUMO

The common marmoset (Callithrix jacchus) is quickly gaining traction as a premier neuroscientific model. However, considerable progress is still needed in understanding the functional and structural organization of the marmoset brain to rival that documented in longstanding preclinical model species, like mice, rats, and Old World primates. To accelerate such progress, we present the Marmoset Functional Brain Connectivity Resource (marmosetbrainconnectome.org), currently consisting of over 70 h of resting-state fMRI (RS-fMRI) data acquired at 500 µm isotropic resolution from 31 fully awake marmosets in a common stereotactic space. Three-dimensional functional connectivity (FC) maps for every cortical and subcortical gray matter voxel are stored online. Users can instantaneously view, manipulate, and download any whole-brain functional connectivity (FC) topology (at the subject- or group-level) along with the raw datasets and preprocessing code. Importantly, researchers can use this resource to test hypotheses about FC directly - with no additional analyses required - yielding whole-brain correlations for any gray matter voxel on demand. We demonstrate the resource's utility for presurgical planning and comparison with tracer-based neuronal connectivity as proof of concept. Complementing existing structural connectivity resources for the marmoset brain, the Marmoset Functional Brain Connectivity Resource affords users the distinct advantage of exploring the connectivity of any voxel in the marmoset brain, not limited to injection sites nor constrained by regional atlases. With the entire raw database (RS-fMRI and structural images) and preprocessing code openly available for download and use, we expect this resource to be broadly valuable to test novel hypotheses about the functional organization of the marmoset brain.


Assuntos
Callithrix , Vigília , Acesso à Informação , Animais , Encéfalo/fisiologia , Callithrix/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Ratos
10.
Neuroimage ; 250: 118965, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122965

RESUMO

Localising accurate brain regions needs careful evaluation in each experimental species due to their individual variability. However, the function and connectivity of brain areas is commonly studied using a single-subject cranial landmark-based stereotactic atlas in animal neuroscience. Here, we address this issue in a small primate, the common marmoset, which is increasingly widely used in systems neuroscience. We developed a non-invasive multi-modal neuroimaging-based targeting pipeline, which accounts for intersubject anatomical variability in cranial and cortical landmarks in marmosets. This methodology allowed creation of multi-modal templates (MarmosetRIKEN20) including head CT and brain MR images, embedded in coordinate systems of anterior and posterior commissures (AC-PC) and CIFTI grayordinates. We found that the horizontal plane of the stereotactic coordinate was significantly rotated in pitch relative to the AC-PC coordinate system (10 degrees, frontal downwards), and had a significant bias and uncertainty due to positioning procedures. We also found that many common cranial and brain landmarks (e.g., bregma, intraparietal sulcus) vary in location across subjects and are substantial relative to average marmoset cortical area dimensions. Combining the neuroimaging-based targeting pipeline with robot-guided surgery enabled proof-of-concept targeting of deep brain structures with an accuracy of 0.2 mm. Altogether, our findings demonstrate substantial intersubject variability in marmoset brain and cranial landmarks, implying that subject-specific neuroimaging-based localization is needed for precision targeting in marmosets. The population-based templates and atlases in grayordinates, created for the first time in marmoset monkeys, should help bridging between macroscale and microscale analyses.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Callithrix/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Pontos de Referência Anatômicos , Animais , Encéfalo/cirurgia , Callithrix/cirurgia , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Reprodutibilidade dos Testes , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X/instrumentação
11.
J Neurosci ; 40(48): 9236-9249, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097633

RESUMO

Understanding the similarity of cortico-subcortical networks topologies between humans and nonhuman primate species is critical to study the origin of network alternations underlying human neurologic and neuropsychiatric diseases. The New World common marmoset (Callithrix jacchus) has become popular as a nonhuman primate model for human brain function. Most marmoset connectomic research, however, has exclusively focused on cortical areas, with connectivity to subcortical networks less extensively explored. Here, we aimed to first isolate patterns of subcortical connectivity with cortical resting-state networks in awake marmosets using resting-state fMRI, then to compare these networks with those in humans using connectivity fingerprinting. In this study, we used 5 marmosets (4 males, 1 female). While we could match several marmoset and human resting-state networks based on their functional fingerprints, we also found a few striking differences, for example, strong functional connectivity of the default mode network with the superior colliculus in marmosets that was much weaker in humans. Together, these findings demonstrate that many of the core cortico-subcortical networks in humans are also present in marmosets, but that small, potentially functionally relevant differences exist.SIGNIFICANCE STATEMENT The common marmoset is becoming increasingly popular as an additional preclinical nonhuman primate model for human brain function. Here we compared the functional organization of cortico-subcortical networks in marmosets and humans using ultra-high field fMRI. We isolated the patterns of subcortical connectivity with cortical resting-state networks (RSNs) in awake marmosets using resting-state fMRI and then compared these networks with those in humans using connectivity fingerprinting. While we could match several marmoset and human RSNs based on their functional fingerprints, we also found several striking differences. Together, these findings demonstrate that many of the core cortico-subcortical RSNs in humans are also present in marmosets, but that small, potentially functionally relevant differences exist.


Assuntos
Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Animais , Callithrix , Córtex Cerebral/diagnóstico por imagem , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Descanso/fisiologia , Especificidade da Espécie , Colículos Superiores/fisiologia
12.
Macromol Rapid Commun ; 42(8): e2000577, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33251648

RESUMO

Polymer-graphene composites have attracted significant attention; however, their formation mechanisms are a focus of debate. This work tries to clarify how grafting occurs on graphene by electron spin resonance techniques. As a result, two pathways are found. One passes through the radicals formed by cleaving CO bonds on graphene are transferred to monomers, then grafting and polymerization proceed. Another mechanism passes through the oxy-radicals, which react with monomers in solution and finally react with carbon radicals on graphene. Based on the mechanism, various types of polymer-graphene composites are prepared, and applied to electrical conductive sheets, basic catalysts, and acidic catalysts.


Assuntos
Grafite , Condutividade Elétrica , Substâncias Macromoleculares , Polimerização , Polímeros
13.
Cereb Cortex ; 30(11): 5943-5959, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556184

RESUMO

The common marmoset (Callithrix jacchus) is a New World primate that is becoming increasingly popular as a preclinical model. To assess functional connectivity (FC) across the marmoset brain, resting-state functional MRI (RS-fMRI) is often performed under isoflurane anesthesia to avoid the effects of motion, physiological stress, and training requirements. In marmosets, however, it remains unclear how isoflurane anesthesia affects patterns of FC. Here, we investigated the effects of isoflurane on FC when delivered with either medical air or 100% pure oxygen, two canonical methods of inhalant isoflurane anesthesia delivery. The results demonstrated that when delivered with either medical air or 100% oxygen, isoflurane globally decreased FC across resting-state networks that were identified in awake marmosets. Generally, although isoflurane globally decreased FC in resting-state networks, the spatial structure of the networks was preserved. Outside of the context of RS networks, we indexed pair-wise functional connectivity between regions across the brain and found that isoflurane substantially altered interhemispheric and thalamic FC. Taken together, these findings indicate that RS-fMRI under isoflurane anesthesia is useful to evaluate the global structure of functional networks, but may obfuscate important nodes of some network components when compared to data acquired in fully awake marmosets.


Assuntos
Anestésicos Inalatórios/farmacologia , Encéfalo/efeitos dos fármacos , Isoflurano/farmacologia , Vias Neurais/efeitos dos fármacos , Descanso , Vigília , Animais , Encéfalo/fisiologia , Callithrix , Feminino , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Descanso/fisiologia , Vigília/fisiologia
14.
Neuroimage ; 215: 116815, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278898

RESUMO

An object that is looming toward a subject or receding away contains important information for determining if this object is dangerous, beneficial or harmless. This information (motion, direction, identity, time-to-collision, size, velocity) is analyzed by the brain in order to execute the appropriate behavioral responses depending on the context: fleeing, freezing, grasping, eating, exploring. In the current study, we performed ultra-high-field functional MRI (fMRI) at 9.4T in awake marmosets to explore the patterns of brain activation elicited by visual stimuli looming toward or receding away from the monkey. We found that looming and receding visual stimuli activated a large cortical network in frontal, parietal, temporal and occipital cortex in areas involved in the analysis of motion, shape, identity and features of the objects. Looming stimuli strongly activated a network composed of portions of the pulvinar, superior colliculus, putamen, parietal, prefrontal and temporal cortical areas. These activations suggest the existence of a network that processes visual stimuli looming toward peripersonal space to predict the consequence of these stimuli. Together with previous studies in macaque monkeys, these findings indicate that this network is preserved across Old and New World primates.


Assuntos
Encéfalo/fisiologia , Percepção de Forma/fisiologia , Imageamento por Ressonância Magnética/métodos , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Vigília/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Callithrix , Masculino , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Vias Visuais/diagnóstico por imagem
15.
Neuroimage ; 204: 116241, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586676

RESUMO

Resting-state functional MRI (RS-fMRI) is widely used to assess how strongly different brain areas are connected. However, this connection obtained by RS-fMRI, which is called functional connectivity (FC), simply refers to the correlation of blood oxygen level-dependent (BOLD) signals across time it has yet to be quantified how accurately FC reflects cellular connectivity (CC). In this study, we elucidated this relationship using RS-fMRI and quantitative tracer data in marmosets. In addition, we also elucidated the effects of distance between two brain regions on the relationship between FC and CC across seed region. To calculate FC, we used full correlation approach that is considered to reflect not only direct (monosynaptic connections) but also indirect pathways (polysynaptic connections). Our main findings are that: (1) overall FC obtained by RS-fMRI was highly correlated with tracer-based CC, but correlation coefficients varied remarkably across seed regions; (2) the strength of FC decreased with increase in the distance between two regions; (3) correlation coefficients between FC and CC after regressing out the effects of the distance between two regions still varied across seed regions, but some regions have strong correlations. These findings suggest that although FC reflects the strength of monosynaptic pathways, it is strongly affected by the distance between regions.


Assuntos
Encéfalo , Conectoma , Rede Nervosa , Técnicas de Rastreamento Neuroanatômico , Animais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Callithrix , Feminino , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
16.
Neuroimage ; 215: 116800, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32276072

RESUMO

Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Macaca fascicularis , Macaca fuscata , Macaca mulatta , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia
17.
J Neurophysiol ; 124(6): 1900-1913, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112698

RESUMO

The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.


Assuntos
Mapeamento Encefálico , Giro do Cíngulo/fisiologia , Putamen/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Percepção do Tato/fisiologia , Animais , Braço , Comportamento Animal/fisiologia , Callithrix , Conectoma , Face , Feminino , Giro do Cíngulo/diagnóstico por imagem , Perna (Membro) , Imageamento por Ressonância Magnética , Masculino , Estimulação Física , Putamen/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Tálamo/diagnóstico por imagem
18.
Cereb Cortex ; 29(9): 3738-3751, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30307479

RESUMO

SAD kinases regulate presynaptic vesicle clustering and neuronal polarization. A previous report demonstrated that Sada-/- and Sadb-/- double-mutant mice showed perinatal lethality with a severe defect in axon/dendrite differentiation, but their single mutants did not. These results indicated that they were functionally redundant. Surprisingly, we show that on a C57BL/6N background, SAD-A is essential for cortical development whereas SAD-B is dispensable. Sada-/- mice died within a few days after birth. Their cortical lamination pattern was disorganized and radial migration of cortical neurons was perturbed. Birth date analyses with BrdU and in utero electroporation using pCAG-EGFP vector showed a delayed migration of cortical neurons to the pial surface in Sada-/- mice. Time-lapse imaging of these mice confirmed slow migration velocity in the cortical plate. While the neurites of hippocampal neurons in Sada-/- mice could ultimately differentiate in culture to form axons and dendrites, the average length of their axons was shorter than that of the wild type. Thus, analysis on a different genetic background than that used initially revealed a nonredundant role for SAD-A in neuronal migration and differentiation.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/enzimologia , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Axônios/enzimologia , Células Cultivadas , Feminino , Isoenzimas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
19.
Proteins ; 87(5): 416-424, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684364

RESUMO

Many protein and peptide sequences are self-assembled into ß-sheet-rich fibrous structures called amyloids. Their atomic details provide insights into fundamental knowledge related to amyloid diseases. To study the detailed structure of the amyloid, we have developed a model system that mimics the self-assembling process of the amyloid within a water-soluble protein, termed peptide self-assembly mimic (PSAM). PSAM enables capturing of a peptide sequence within a water-soluble protein, thus making structural and energetics-related studies possible. In this work, we extend our PSAM approach to a naturally occurring chameleon sequence from αB crystallin. We chose "Val-Leu-Gly-Asp-Val (VLGDV)", a five amino-acid sequence, which forms a ß-turn in the native structure and a ß-barrel in the amyloid oligomer cylindrin, as a grafting sequence to the PSAM scaffold. The crystal structure revealed that the sequence grafting induced ß-sheet bending at the grafted site. We further investigated the role of the central glycine residue and found that its role in the ß-sheet bending is dependent on the neighboring residues. The ability of PSAM to observe the structural alterations induced by the grafted sequence provides an opportunity to evaluate the structural impact of a sequence from the peptide self-assembly.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Conformação Proteica em Folha beta/genética , Cadeia B de alfa-Cristalina/química , Sequência de Aminoácidos/genética , Amiloide/genética , Peptídeos beta-Amiloides/genética , Cristalografia por Raios X , Modelos Moleculares , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/genética , Conformação Proteica , Estrutura Secundária de Proteína , Cadeia B de alfa-Cristalina/genética
20.
Neuroimage ; 193: 126-138, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30879997

RESUMO

Marmosets are small New World primates that are posited to become an important preclinical animal model for studying intractable human brain diseases. A critical step in the development of marmosets as a viable model for human brain dysfunction is to characterize brain networks that are homologous with human network topologies. In this regard, the use of functional magnetic resonance imaging (fMRI) holds tremendous potential for functional brain mapping in marmosets. Although possible, implementation of hardware for fMRI in awake marmosets (free of the confounding effects of anesthesia) is not trivial due to the technical challenges associated with developing specialized imaging hardware. Here, we describe the design and implementation of a marmoset holder and head-fixation system with an integrated receive coil for awake marmoset fMRI. This design minimized head motion, with less than 100  µm of translation and 0.5 degrees of rotation over 15 consecutive resting state fMRI runs (at 15 min each) across 3 different marmosets. The fMRI data was of sufficient quality to reliably extract 8 resting state networks from each animal with only 60-90 min of resting state fMRI acquisition per animal. The restraint system proved to be an efficient and practical solution for securing an awake marmoset and positioning a receive array within minutes, limiting stress to the animal. This design is also amenable for multimodal imaging, allowing for electrode or lens placement above the skull via the open chamber design. All computer-aided-design (CAD) files and engineering drawings are provided as an open resource, with the majority of the parts designed to be 3D printed.


Assuntos
Artefatos , Imageamento por Ressonância Magnética/instrumentação , Movimento (Física) , Neuroimagem/instrumentação , Vigília , Animais , Callithrix , Desenho Assistido por Computador , Desenho de Equipamento , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA