Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 130(14): 144901, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19368465

RESUMO

The micelle formation and the dynamic coexistence in amphiphilic solution are investigated by molecular dynamics simulation of coarse-grained rigid amphiphilic molecules with explicit solvent molecules. Our simulations show that three kinds of isolated micelles (disk, cylindrical, and spherical micelles) are observed at a lower temperature by quenching from a random configuration of amphiphilic molecules in solution at a higher temperature. The micellar shape changes from a disk into a cylinder, and then into a sphere as the hydrophilic interaction increases whereas it is not so sensitive to the variation of the hydrophobic interaction. This fact indicates that the hydrophilic interaction plays an important role in determining the micellar shape in the range of the interaction parameters used. It is also found that in a certain interaction parameter range, two kinds of micellar shapes coexist dynamically. From the detailed analyses of the dynamic coexistence, it is ascertained that the dynamic coexistence of a cylindrical micelle and a spherical micelle accompanies the coalescence and fragmentation of micelles while that of a disk micelle and a cylindrical micelle does not, but exhibits the continuous change between them.

2.
Phys Rev Lett ; 101(21): 215001, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19113417

RESUMO

Steady collisionless-driven reconnection in an open system is investigated by means of full-particle simulations. A long thin electron current sheet extends towards the outflow direction when the system relaxes to a steady state. Although the pressure tensor term along the reconnection electric field contributes to the violation of the electron frozen-in condition, a new force balance in the inflow direction is realized between the Lorentz and electrostatic forces, which is quite different from that in Harris equilibrium. The strong electrostatic field is generated through the combined effect of the Hall term and a driving inflow. This new force balance is more evident in the three-dimensional case due to the growth of an instability along the reconnection electric field. It is also found that the normalized charge density is in proportion to the square of the electron Alfvén velocity averaged over the electron dissipation region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA