Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sensors (Basel) ; 21(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502673

RESUMO

In this research work, the gas sensing properties of halogenated chloroaluminum phthalocyanine (ClAlPc) thin films were studied at room temperature. We fabricated an air-stable ClAlPc gas sensor based on a vertical organic diode (VOD) with a porous top electrode by the solution process method. The surface morphology of the solution-processed ClAlPc thin film was examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The proposed ClAlPc-based VOD sensor can detect ammonia (NH3) gas at the ppb level (100~1000 ppb) at room temperature. Additionally, the ClAlPc sensor was highly selective towards NH3 gas compared to other interfering gases (NO2, ACE, NO, H2S, and CO). In addition, the device lifetime was tested by storing the device at ambient conditions. The effect of relative humidity (RH) on the ClAlPc NH3 gas sensor was also explored. The aim of this study is to extend these findings on halogenated phthalocyanine-based materials to practical electronic nose applications in the future.

2.
ACS Appl Mater Interfaces ; 15(6): 7911-7918, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719898

RESUMO

Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.

3.
Polymers (Basel) ; 14(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36433157

RESUMO

Bio-inspired materials have received significant interest in the development of flexible electronics due to their natural grid structures, especially natural leaf vein networks. In this work, a bio-inspired leaf vein-based flexible humidity sensor is demonstrated. The proposed sensor is composed of a leaf/Al/glycerin/Ag paste. The Al-deposited leaf vein networks are used as a bottom electrode with a resistance of around 100 Ω. The humidity sensor responds well to relative humidity (RH) levels ranging from 15% to 70% at room temperature. The fabricated humidity sensor exhibits an ultra-sensitive response to different humidity conditions due to the biodegradable insulating hygroscopic polymer (glycerin), specifically the ionic conductivity reaction. To further verify the presence of ionic conduction, the device performance is tested by doping NaCl salt into the hygroscopic polymer sensing layer. In addition, both the repeatability and flexibility of the sensor are tested under different bending angles (0°, 90°, 180°, and 360°). The bioinspired ultrasensitive humidity sensor with a biocompatible and biodegradable sensing layer holds great potential, especially for health care applications (e.g., respiratory monitoring) without causing any body harm.

4.
ACS Omega ; 5(36): 23021-23027, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954152

RESUMO

A fine cylindrical chemical sensor tip is developed with optical fiber in the core, surrounded by a transparent cylinder of photopolymer Norland Optical Adhesive 61 (NOA 61), and covered by a polymer hydrogel mixed with sensing molecules. The overall diameter is as small as 1.5 mm. pH response is demonstrated using two approaches of sensing materials: (i) absorbing probe Phenol Red mixed with Rhodamine 6G fluorescent dye and (ii) 8-hydroxypyrene-1,3,6-trisulfonic acid fluorescent probe. Both the optical excitation and fluorescence signal collection are through the optical fibers. A time resolution of 10 s is achieved for pH variations. Good linearity is observed in the physiological range from pH 7.0 to pH 8.6 with reversible and reproducible outcomes. For in vitro urea measurement, the sensor tip can distinguish 1, 3, and 5 mM urea solution, which is a crucial range in saliva urea concentration. The miniaturized tip with such simple cylindrical symmetry is designed to detect vital signs during minimally invasive surgeries and can be potentially accompanied with endoscopes to enter human bodies.

5.
RSC Adv ; 10(48): 28766-28777, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520068

RESUMO

Improving the stability of large-area organic light-emitting diodes is very important for practical applications. The interfacial layer plays a crucial role to improve the electron injection characteristic. In this work, devices prepared by various solution-processed interfacial materials and thermal-evaporated CsF were compared. In the devices with active area of 2.25 mm × 2.25 mm, we found that the performance and lifetime of the device with solution-processed Liq interfacial layer was comparable with the device with thermal-evaporated CsF. However, for the devices with active area of 2.4 cm × 3.7 cm, the device based on thermal-evaporated CsF was the champion in both performance and lifetime. The influence of the thickness of CsF on the stability was investigated. The most stable blue fluorescent devices can be achieved when the thickness of CsF is about 0.1 nm, while the most stable green phosphorescent devices can be obtained by depositing 0.2 nm CsF. The best current efficiency for the blue fluorescent device is 4 cd A-1, while the best one for the green phosphorescent device is 22 cd A-1. Furthermore, burning points causing the failure of the devices were investigated by scanning electron microscopy, atomic force microscopy, thermography and secondary ion mass spectrometry. We demonstrated that burning points are defects, which can be observed after long-time operation, showing higher local temperature and fragmentary electrode.

6.
RSC Adv ; 10(61): 37161-37167, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521228

RESUMO

Organometal halide perovskites are attracting a great deal of attention because of their long carrier diffusion lengths, wide wavelength tunability, and narrow-band emission. However, the toxicity of lead has caused considerable environmental and health concerns. In this work, lead-free cesium tin halide nanocrystals are synthesized and investigated. CsSnBr3 and CsSnI3 nanocrystals, 25 and 7 nm in size, are synthesized by a facile hot injection method. Absorption spectroscopy, photoluminescence spectroscopy, and X-ray diffraction were used to understand their structural and optical properties. CsSnBr3 and CsSnI3 nanocrystals show emission peaks at 683 and 938 nm, respectively. These nanocrystals show shelf stability for a few months. Temperature-dependent photoluminescence is utilized to know more about fundamental physical parameters, such as exciton binding energy, charge carrier-phonon interactions and band gap. Light-emitting diodes and color down-conversion films are also demonstrated using these lead free perovskite nanocrystals.

7.
Biosens Bioelectron ; 162: 112230, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32392152

RESUMO

Solid-state zinc ion sensor is developed with high enough resolution and reproducibility for the potential application in brain injury monitoring. An optical diffuser is incorporated into the zinc ion sensor based on optical fiber and hydrogel doped with the fluorescent zinc ion probe molecule meso-2,6-Dichlorophenyltripyrrinone (TPN-Cl2). The diffuser transforms the high-peak-intensity excitation light near the fiber end into a broad light with moderate local intensity to reduce the degradation of the probe molecule. Reversible detection can be reached for 1, 2, and 5 µM (10-6 Molar), with slopes 0.3, 0.6, and 0.8 respectively. This is the pathophysiological concentration range after brain injury. The sensor is applied to neuron-glial cultures and macrophage under the stimulation of lipopolysaccharide (LPS), KCl and oxygen/glucose deprivation (OGD) that reflect inflammation, depolarization and ischemia respectively, mimicking events after brain injury. The zinc ion level is raised to 4-5 µM after LPS treatment, and then reduced to <3 µM after the co-treatment with the herbal drug silymarin. The results suggest the conditions of the neural cells under stress can be monitored.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Hidrogéis/química , Neurônios/citologia , Zinco/análise , Animais , Células Cultivadas , Neuroglia/química , Neuroglia/citologia , Neurônios/química , Fibras Ópticas , Ratos
8.
ACS Appl Mater Interfaces ; 11(33): 30176-30184, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31343151

RESUMO

Organic-inorganic perovskite nanocrystals with excellent optoelectronic properties have been utilized in various applications, despite their stability issues. The perovskite materials are sensitive to environments such as polar solvents, moisture, and heat. Thus, they are not used for extrusion three-dimensional (3D) printing, as it is usually conducted in the ambient environment and requires heating to liquefy the printed materials. In this work, 11 thermoplastic polymers conventionally used for extrusion 3D printing were investigated to test their capability as protective encapsulation materials for perovskite nanocrystals. Three of them exhibited good protective properties, and one (polycaprolactone, PCL) of these three could be blended with perovskite nanocrystals to form perovskite nanocrystal-PCL composites, which were deformable and stretchable once heated. Because of the low melting point of PCL, the perovskite nanocrystals maintained their optical properties after 3D printing, and the printed objects were still having fluorescent behavior. Moreover, fluorescent micrometer-sized fibers based on the perovskite nanocrystal-PCL composites could also be simply prepared using cotton candy makers. Perovskite nanocrystal-PCL composite films with different emission wavelengths were incorporated with blue light-emitting diodes (LEDs) to realize white LEDs with Commission Internationale de l'Éclairage chromaticity coordinates of (0.33, 0.33).

9.
RSC Adv ; 9(19): 10584-10598, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35515314

RESUMO

The electrical current leakage and stability are studied for solution-processed OLEDs with areas of 4.45 mm2, 3 × 3.2 cm2, and 6 × 11.5 cm2. The emission layer of the OLED has a ternary or binary mixed host with hole-transporting molecules tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi), together with the electron-transporting molecule 2,7-bis(diphenylphosphoryl)-9,9'-spirobi[fluorene] (SPPO13). The phosphorescent emitters are Ir(mppy)3 for green and bis[4-(4-tert-butylphenyl)thieno[3,2-c]pyridine][N,N'-diisopropylbenamidinato]iridium(iii) (PR-02) for orange. Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)] (TFB) is used as the hole transport layer and PEDOT:PSS is used as the hole injection layer. On top of the emission layer, CsF/Al is deposited by thermal evaporation as the cathode. All organic layers are deposited by blade coating and the initial current leaking defects can be avoided by careful control of the coating conditions. The detrimental burning point caused by a local current short developed after long-time operation can be avoided by reducing the operation voltage using a ternary mixed host. The operation voltage is only 4 V at 100 cd m-2 and 5 V at 250 cd m-2 for the green emitting device. Furthermore, the crystallization defect is reduced by the ternary host. For the orange emitting device, the binary host is good enough with an operating voltage of 5 V at 100 cd m-2. For an area as large as 6 × 11.5 cm2, the OLED shows good stability and there is no burning point after an operation of over 1600 hours.

10.
Chempluschem ; 84(9): 1375-1383, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944041

RESUMO

The instability of the organic light-emitting diodes (OLEDs) during operation can be attributed to the existence of point defects on the organic layers. In this work, the effect of mixed-host emissive layer and the thermal annealing treatment were investigated to eliminate defects and to boost the device performance. The mixed-host system includes 4,4',4''-tri (9-carbazoyl) triphenylamine (TCTA) and 2,7-bis(diphenylphosphoryl)-9, 9'-spirobi[fluorene] (SPPO13). The mixed-host emissive layer with thermal annealing treatment showed low roughness and few pinholes, and the devices fabricated from this emissive layer exhibited high efficiencies, high stabilities, and long lifetimes. The red and orange-red OLEDs exhibited efficiencies of 13.9 cd/A and 24.35 cd/A, respectively. The longest half-lifetime (L0 =500 cd/m2 ) of the red and orange-red OLEDs were 158 h and 180 h, respectively. Efforts were made to solve problems in large-area coating and to reduce the number of defects on in organic layer. Large-active-area (active area=3 cm×4 cm) red phosphorescent OLEDs (PhOLEDs) devices were realized with very high current efficiency up to 9 cd/A.

11.
ChemSusChem ; 11(14): 2429-2435, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29766668

RESUMO

Interfacial engineering plays an important role in determining the performance and stability of polymer solar cells (PSCs). In this study, thermally stable highly efficient PSCs are fabricated by incorporating a solution-processed cathode interfacial layer (CIL), including 4,4'-({[methyl(4-sulfonatobutyl)ammonio]bis(propane-3,1-diyl)}bis(dimethylammoniumdiyl))bis(butane-1-sulfonate) (MSAPBS) and polyethylenimine (PEI). For PSCs based on blends of poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-[4-(2-ethylhexyl)-3fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl]} (PBDTTT-EFT) and [6,6]-phenyl C71 -butyric acid methyl ester (PC71 BM), the maximum power conversion efficiency (PCE) of inverted PSCs reaches 8.1 % and 7.2 % for MSAPBS and PEI CILs, respectively. The inverted PEI devices exhibit remarkable stability (lifetime >6000 h) under accelerated thermal aging (at 80 °C in ambient environment), which is much superior to that of the device with commonly used LiF CIL (lifetime≈33 h). This stability represents the best result reported for PSCs. The promising results based on this strategy can stimulate further work on the development of novel CILs for PSCs and pave the way towards the realization of commercially viable PSCs with high performance and long-term stability.

12.
ChemSusChem ; 10(13): 2778-2787, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28516516

RESUMO

Here, we report that long-term stable and efficient organic solar cells (OSCs) can be obtained through the following strategies: i) combination of rapid-drying blade-coating deposition with an appropriate thermal annealing treatment to obtain an optimized morphology of the active layer; ii) insertion of interfacial layers to optimize the interfacial properties. The resulting devices based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl)] (PBDTTT-EFT):[6,6]-phenyl C71 butyric acid methyl ester (PC71 BM) blend as the active layer exhibits a power conversion efficiency (PCE) up to 9.57 %, which represents the highest efficiency ever reported for blade-coated OSCs. Importantly, the conventional structure devices based on poly(3-hexylthiophene) (P3HT):phenyl-C61 -butyric acid methyl ester (PCBM) blend can retain approximately 65 % of their initial PCE for almost 2 years under operating conditions, which is the best result ever reported for long-term stable OSCs under operational conditions. More encouragingly, long-term stable large-area OSCs (active area=216 cm2 ) based on P3HT:PCBM blend are also demonstrated. Our findings represent an important step toward the development of large-area OSCs with high performance and long-term stability.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Energia Solar , Polímeros/química , Temperatura
13.
ACS Appl Mater Interfaces ; 7(34): 18899-903, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26278552

RESUMO

We demonstrated a large-area nanopatterning technique with the help of a non-close-packed PS sphere layer over a large-area substrate. The non-close-packed PS sphere layer is fabricated by blade coating method. It was demonstrated that non-close-packed PS spheres can be achieved within an area of 18 cm × 25 cm on a rigid glass substrate and within an area of 10 cm × 10 cm on a flexible substrate. We also demonstrated that the blade-coated non-close-packed PS sphere layer was suitable for the mass production of vertical organic transistors over a large area.

14.
ACS Nano ; 7(12): 10780-7, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24224917

RESUMO

Interface carrier recombination currently hinders the performance of hybrid organic-silicon heterojunction solar cells for high-efficiency low-cost photovoltaics. Here, we introduce an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer into hybrid heterojunction solar cells based on silicon nanowires (SiNWs) and conjugate polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS). The highest power conversion efficiency reaches a record 13.01%, which is largely ascribed to the modified organic surface morphology and suppressed saturation current that boost the open-circuit voltage and fill factor. We show that the insertion of TAPC increases the minority carrier lifetime because of an energy offset at the heterojunction interface. Furthermore, X-ray photoemission spectroscopy reveals that TAPC can effectively block the strong oxidation reaction occurring between PEDOT:PSS and silicon, which improves the device characteristics and assurances for reliability. These learnings point toward future directions for versatile interface engineering techniques for the attainment of highly efficient hybrid photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA