Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 20(7): 2183-97, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777536

RESUMO

Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.


Assuntos
Água Subterrânea/análise , Metano/metabolismo , Solo/química , Áreas Alagadas , Meio Ambiente , Geografia , Metano/análise , Temperatura
2.
Environ Microbiol Rep ; 1(5): 450-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23765899

RESUMO

Methanotrophic bacteria in soils derived from volcanic ash (Andisols) were characterized via time series (13) C-phospholipid fatty acid (PLFA) labelling. Three Andisols were incubated under 2 ppmv (13) CH4 for up to 18 weeks, thus enabling high-affinity methanotrophs to be selectively characterized and quantified. PLFA profiles from all soils were broadly similar, but the magnitude of the high-affinity methanotrophic populations determined through (13) C-PLFA-stable isotope probing displayed sizeable differences. Substantial incorporation of (13) C indicated very large high-affinity methanotrophic populations in two of the soils. Such high values are far in excess (10×) of those observed for a range of mineral soils incubated under similar conditions (Bull et al., 2000; Maxfield et al., 2006; 2008a, b). Two of the three Andisols studied also displayed high but variable CH4 oxidation rates ranging from 0.03 to 1.58 nmol CH4 g(-1) d.wt. h(-1) . These findings suggest that Andisols, a previously unstudied soil class with respect to high-affinity methanotrophic bacteria, may oxidize significant amounts of atmospheric methane despite their low areal coverage globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA