Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Anal Chem ; 93(17): 6779-6783, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33881816

RESUMO

Infrared spectroscopy is ideally suited for the investigation of protein reactions at the atomic level. Many systems were investigated successfully by applying Fourier transform infrared (FTIR) spectroscopy. While rapid-scan FTIR spectroscopy is limited by time resolution (about 10 ms with 16 cm-1 resolution), step-scan FTIR spectroscopy reaches a time resolution of about 10 ns but is limited to cyclic reactions that can be repeated hundreds of times under identical conditions. Consequently, FTIR with high time resolution was only possible with photoactivable proteins that undergo a photocycle. The huge number of nonrepetitive reactions, e.g., induced by caged compounds, were limited to the millisecond time domain. The advent of dual-comb quantum cascade laser now allows for a rapid reaction monitoring in the microsecond time domain. Here, we investigate the potential to apply such an instrument to the huge class of G-proteins. We compare caged-compound-induced reactions monitored by FTIR and dual-comb spectroscopy by applying the new technique to the α subunit of the inhibiting Gi protein and to the larger protein-protein complex of Gαi with its cognate regulator of G-protein signaling (RGS). We observe good data quality with a 4 µs time resolution with a wavelength resolution comparable to FTIR. This is more than three orders of magnitude faster than any FTIR measurement on G-proteins in the literature. This study paves the way for infrared spectroscopic studies in the so far unresolvable microsecond time regime for nonrepetitive biological systems including all GTPases and ATPases.


Assuntos
Lasers Semicondutores , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Sensors (Basel) ; 20(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604869

RESUMO

Rapid multi-species sensing is an overarching goal in time-resolved studies of chemical kinetics. Most current laser sources cannot achieve this goal due to their narrow spectral coverage and/or slow wavelength scanning. In this work, a novel mid-IR dual-comb spectrometer is utilized for chemical kinetic investigations. The spectrometer is based on two quantum cascade laser frequency combs and provides rapid (4 µs) measurements over a wide spectral range (~1175-1235 cm-1). Here, the spectrometer was applied to make time-resolved absorption measurements of methane, acetone, propene, and propyne at high temperatures (>1000 K) and high pressures (>5 bar) in a shock tube. Such a spectrometer will be of high value in chemical kinetic studies of future fuels.

3.
J Am Chem Soc ; 141(29): 11471-11480, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31306004

RESUMO

Complexes with weakly coordinating ligands are often formed in chemical reactions and can play key roles in determining the reactivity, particularly in catalytic reactions. Using time-resolved X-ray absorption fine structure (XAFS) spectroscopy in combination with time-resolved IR (TRIR) spectroscopy and tungsten hexacarbonyl, W(CO)6, we are able to structurally characterize the formation of an organometallic alkane complex, determine the W-C distances, and monitor the reactivity with silane to form an organometallic silane complex. Experiments in perfluorosolvents doped with xenon afford initially the corresponding solvated complex, which is sufficiently reactive in the presence of Xe that we can then observe the coordination of Xe to the metal center, providing a unique insight into the metal-xenon bonding. These results offer a step toward elucidating the structure, bonding, and chemical reactivity of transient species by X-ray absorption spectroscopy, which has sensitivity to small structural changes. The XAFS results indicate that the bond lengths of metal-alkane (W-H-C) bond in W(CO)5(heptane) as 3.07 (±0.06) Å, which is longer than the calculated W-C (2.86 Å) for binding of the primary C-H, but shorter than the calculated W-C (3.12 Å) for the secondary C-H. A statistical average of the calculated W-C alkane bond lengths is 3.02 Å, and comparison of this value indicates that the value derived from the XAFS measurements is averaged over coordination of all C-H bonds consistent with alkane chain walking. Photolysis of W(CO)6 in the presence of HSiBu3 allows the conversion of W(CO)5(heptane) to W(CO)5(HSiBu3) with an estimated W-Si distance of 3.20 (±0.03) Å. Time-resolved TRIR and XAFS experiments following photolysis of W(CO)6 in perfluoromethylcyclohexane (PFMCH) allows the characterization of W(CO)5(PFMCH) with a W-F distance of 2.65 (±0.06) Å, and doping PFMCH with Xe allows the characterization of W(CO)5Xe with a W-Xe bond length of 3.10 (±0.02) Å.

4.
Inorg Chem ; 58(15): 9785-9795, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31314505

RESUMO

A transition-metal-based donor-(linker)-acceptor system can produce long-lived charge transfer excited states using visible excitation wavelengths. The ground- and excited-state photophysical properties of a series of [ReCl(CO)3(dppz-(linker)-TPA)] complexes, with varying donor and acceptor energies, have been systematically studied using spectroscopic techniques (both vibrational and electronic) supported by computational chemistry. The long-lived excited state is 3ILCT in nature for all complexes studied, characterized through transient absorption and emission, transient resonance Raman (TR2), and time-resolved infrared (TRIR) spectroscopy and TDDFT calculations. Modulation of the donor and acceptor energies results in changes of the 3ILCT lifetime by 1 order of magnitude, ranging from 6.1(±1) µs when a diphenylamine donor is used to 0.6(±0.2) µs when a triazole linker and triphenylamine donor is used. The excited-state lifetime may be rationalized by consideration of the driving force within the framework of Marcus theory and appears insensitive to the nature of the linker.

5.
J Am Chem Soc ; 140(13): 4534-4542, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29537264

RESUMO

The ground and excited state photophysical properties of a series of fac-[Re(L)(CO)3(α-diimine)] n+ complexes, where L = Br-, Cl-, 4-dimethylaminopyridine (dmap) and pyridine (py) have been extensively studied utilizing numerous electronic and vibrational spectroscopic techniques in conjunction with a suite of quantum chemical methods. The α-diimine ligand consists of 1,10-phenanthroline with the highly electron donating triphenylamine (TPA) appended in the 5 position. This gives rise to intraligand charge transfer (ILCT) states lying lower in energy than the conventional metal-to-ligand charge transfer (MLCT) state, the energies of which are red and blue-shifted, respectively, as the ancillary ligand, L becomes more electron withdrawing. The emitting state is 3ILCT in nature for all complexes studied, characterized through transient absorption and emission, transient resonance Raman (TR2), time-resolved infrared (TRIR) spectroscopy and TDDFT calculations. Systematic modulation of the ancillary ligand causes unanticipated variation in the 3ILCT lifetime by 2 orders of magnitude, ranging from 6.0 µs for L = Br- to 27 ns for L = py, without altering the nature of the excited state formed or the relative order of the other CT states present. Temperature dependent lifetime measurements and quantum chemical calculations provide no clear indication of close lying deactivating states, MO switching, contributions from a halide-to-ligand charge transfer (XLCT) state or dramatic changes in spin-orbit coupling. It appears that the influence of the ancillary ligand on the excited state lifetime could be explained in terms of energy gap law, in which there is a correlation between ln( knr) and Eem with a slope of -21.4 eV-1 for the 3ILCT emission.

6.
Phys Chem Chem Phys ; 20(2): 752-764, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29139504

RESUMO

Varying the degree of thionation of a series of naphthalene diimide (NDI) and naphthalic imide (NI) phenothiazine dyad systems affords a systematic approach for tuning the system's donor-acceptor energy gap. Each dyad was compared to model NDI/NI systems and fully characterised through single crystal X-ray diffraction, NMR, cyclic voltammetry, electron paramagnetic resonance (EPR), transient absorption spectroscopy (TA), time-resolved infra-red spectroscopy (TRIR) and DFT. The measurements reveal that thionation increases both electron affinity of the NDI/NI acceptor dyad component and accessibility of the singly or doubly reduced states. Furthermore, FTIR and TA measurements show that excited state behaviour is greatly affected by thionation of the NDI and induces a decrease in the lifetime of the excited states formed upon the creation of charge-separated states.

7.
J Am Chem Soc ; 139(21): 7335-7347, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28485597

RESUMO

Ferrous iron(II) hexacyanide in aqueous solutions is known to undergo photoionization and photoaquation reactions depending on the excitation wavelength. To investigate this wavelength dependence, we implemented ultrafast two-dimensional UV transient absorption spectroscopy, covering a range from 280 to 370 nm in both excitation and probing, along with UV pump/visible probe or time-resolved infrared (TRIR) transient absorption spectroscopy and density functional theory (DFT) calculations. As far as photoaquation is concerned, we find that excitation of the molecule leads to ultrafast intramolecular relaxation to the lowest triplet state of the [Fe(CN)6]4- complex, followed by its dissociation into CN- and [Fe(CN)5]3- fragments and partial geminate recombination, all within <0.5 ps. The subsequent time evolution is associated with the [Fe(CN)5]3- fragment going from a triplet square pyramidal geometry, to the lowest triplet trigonal bipyramidal state in 3-4 ps. This is the precursor to aquation, which occurs in ∼20 ps in H2O and D2O solutions, forming the [Fe(CN)5(H2O/D2O)]3- species, although some aquation also occurs during the 3-4 ps time scale. The aquated complex is observed to be stable up to the microsecond time scale. For excitation below 310 nm, the dominant channel is photooxidation with a minor aquation channel. The photoaquation reaction shows no excitation wavelength dependence up to 310 nm, that is, it reflects a Kasha Rule behavior. In contrast, the photooxidation yield increases with decreasing excitation wavelength. The various intermediates that appear in the TRIR experiments are identified with the help of DFT calculations. These results provide a clear example of the energy dependence of various reactive pathways and of the role of spin-states in the reactivity of metal complexes.

8.
Inorg Chem ; 56(21): 12967-12977, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984448

RESUMO

The ground- and excited-state properties of a series of [ReCl(CO)3(dppz)] complexes with substituted donor groups were investigated. Alteration of donor-acceptor communication through modulation of torsional angle and the number and nature of the donor substituents allowed the effects on the photophysical properties to be characterized though both computational and spectroscopic techniques, including time-dependent density functional theory and resonance Raman and time-resolved infrared spectroscopy. The ground-state optical properties show significant variation as a result of donor group modulation, with an increased angle between the donor and acceptor blue-shifting and depleting the intensity of the lowest-energy transition, which is consistently intraligand charge transfer (ILCT) in nature. However, across all complexes studied there was minimal perturbation to the excited-state properties and dynamics. Three excited states on the picosecond, nanosecond, and microsecond time scales were observed in all cases, corresponding to 1ILCT, 3ππ*, and 3ILCT, respectively.

9.
Inorg Chem ; 55(10): 4710-9, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27119791

RESUMO

The synthesis of two bipyridine-hexa-peri-hexabenzocoronene (bpy-HBC) ligands functionalized with either (t)Bu or C12H25 and their Re(I) tricarbonyl chloride complexes are reported and their electronic properties investigated using spectroscopic and computational methods. The metal complexes show unusual properties, and we observed the formation of a long-lived excited state using time-resolved infrared spectroscopy. Depending on the solvent, this appears to be of the form Rebpy(•-)HBC(•+) or a bpy-centered π,π* state. TD-DFT calculations support the donor-acceptor charge transfer character of these systems, in which HBC is the donor and bpy is the acceptor. The ground state optical properties are dominated by the HBC chromophore with additional distinct transitions of the complexes, one associated with MLCT 450 nm (ε > 17 000 L mol(-1) cm(-1)) and another with a HBC/metal to bpy charge transfer, termed the MLLCT band (373 nm, ε = 66 000 L mol(-1) cm(-1)). These assignments are also supported by resonance Raman spectroscopy.

10.
Inorg Chem ; 55(23): 12238-12253, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934422

RESUMO

A new 2-pyridyl-1,2,3-triazole (pytri) ligand, TPA-pytri, substituted with a triphenylamine (TPA) donor group on the 5 position of the pyridyl unit was synthesized and characterized. Dichloroplatinum(II), bis(phenylacetylide)platinum(II), bromotricarbonylrhenium(I), and bis(bipyridyl)ruthenium(II) complexes of this ligand were synthesized and compared to complexes of pytri ligands without the TPA substituent. The complexes of unsubstituted pytri ligands show metal-to-ligand charge-transfer (MLCT) absorption bands involving the pytri ligand in the near-UV region. These transitions are complemented by intraligand charge-transfer (ILCT) bands in the TPA-pytri complexes, resulting in greatly improved visible absorption (λmax = 421 nm and ϵ = 19800 M-1 cm-1 for [Pt(TPA-pytri)Cl2]). The resonance Raman enhancement patterns allow for assignment of these absorption bands. The [Re(TPA-pytri)(CO)3Br] and [Pt(TPA-pytri)(CCPh)2] complexes were examined with time-resolved infrared spectroscopy. Shifts in the C≡C and C≡O stretching bands revealed that the complexes form states with increased electron density about their metal centers. [Pt(TPA-pytri)Cl2] is unusual in that it is emissive despite the presence of deactivating d-d states, which prevents emission from the unsubstituted pytri complex.

11.
Inorg Chem ; 54(24): 11697-708, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26630550

RESUMO

The photophysical properties of a number of ruthenium complexes of the general structure [Ru(L1)(L2)(NCS)2], related to the prominent solar cell dye [Ru(dcb)2(NCS)2] (dcb = 4,4'-dicarboxylato-2,2'-bipyridine) are investigated. For L1 = dcb and dmb (dmb = 4,4'-dimethyl-2,2'-bipyridine), several variations of L2 show very little difference in the lowest energy absorption peak. Resonance Raman and density functional theory calculations have been used to assign the corresponding transitions as {Ru(NCS)2} → dcb with significant contributions of the NCS ligands. Transient absorption, time-resolved infrared, and transient resonance Raman spectroscopic techniques were used to probe the photophysics of the complexes and relatively short-lived {Ru(NCS)2} → dcb/dpb (dpb = 4,4'-diphenylethenyl-2,2'-bipyridine) excited states were observed with the exception of [Ru(dcb)(dab)(NCS)2] (dab = 4,4'-dianthracenethenyl-2,2'-bipyridine), which showed a long-lived excited state assigned as ligand centered charge separated.

12.
Inorg Chem ; 53(6): 3126-40, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24559053

RESUMO

A series of dipyrido[3,2-a:2',3'-c]phenazine (dppz)-based ligands with electron-withdrawing substituents and their [Re(CO)3(L)Cl] and [Re(CO)3(L)(py)]PF6 complexes have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) and time-resolved infrared (TRIR) spectroscopic techinques in conjunction with computational chemistry as well as electrochemical studies, emission, and absorption of ground and excited states. DFT (B3LYP) frequency calculations show good agreement with nonresonant Raman spectra, which allowed these to be used to identify phenanthroline, phenazine, and delocalized modes. These band assignments were used to establish the nature of chromophores active in resonance Raman spectra, probed with wavelengths between 350.7 and 457.9 nm. X-ray crystallography of [Re(CO)3(dppzBr2)Cl] and [Re(CO)3(dppzBr)(py)]PF6 showed these crystallize in space groups triclinic P1 and monoclinic P2(1/n), respectively. Electrochemical studies showed that substituents have a strong effect on the phenazine MO, changing the reduction potential by 200 mV. Transient absorption studies showed that generally the [Re(CO)3(L)(py)]PF6 complexes had longer lifetimes than the corresponding [Re(CO)3(L)Cl] complexes; the probed state is likely to be (3)π → π* (phz) in nature. TR(2) spectra of the ligands provided a marker for the triplet π → π* state, and the TR(2) spectra of the complexes suggest an intraligand (IL) π,π* state for [Re(CO)3(L)(py)](+) complexes, and a potentially mixed IL/MLCT state for [Re(CO)3(L)Cl] complexes. TRIR spectroscopy is more definitive with THEXI state assignments, and analysis of the metal-carbonyl region (1800-2100 cm(-1)) on the picosecond and nanosecond time scales indicates the formation of MLCT(phen/phz) states for all [Re(CO)3(L)Cl] complexes, and IL π → π* (phen) states for all [Re(CO)3(L)(py)](+) complexes, with all but [Re(CO)3(dppzBr(CF3))(py)](+) showing some contribution from an MLCT(phen) state also.

13.
Inorg Chem ; 53(24): 13049-60, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25469979

RESUMO

The ligand 2,3,8,9,14,15-hexa(octyl-thioether)-5,6,11,12,17,18-hexaazatrinaphthalene (HATN-(SOct)6) and its mono-, bi-, and trinuclear Re(CO)3Cl complexes are reported. These are characterized by (1)H NMR spectroscopy and electrochemistry, and show broad, intense absorption across the visible wavelength region. Using time-dependent density functional theory (TD-DFT) calculations and resonance Raman spectroscopy these absorption bands are shown to be π → π*, MLCT, ILCT(sulfur → HATN), or mixed MLCT/ILCT in nature. Time-resolved infrared spectroscopy is used to probe structural changes and dynamics on short time scales and supports the assignment of a mixed MLCT/ILCT state in which both sulfur groups and one metal center act as electron donors to the HATN core.

14.
Inorg Chem ; 53(3): 1339-54, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24444107

RESUMO

The donor-acceptor ligands 11-(4-diphenylaminophenyl)dipyrido[3,2-a:2',3'-c]phenazine (dppz-PhNPh2) and 11-(4-dimethylaminophenyl)dipyrido[3,2-a:2',3'-c]phenazine (dppz-PhNMe2), and their rhenium complexes, [Re(CO)3X] (X = Cl(-), py, 4-dimethylaminopyridine (dmap)), are reported. Crystal structures of the two ligands were obtained. The optical properties of the ligands and complexes are dominated by intraligand charge transfer (ILCT) transitions from the amine to the dppz moieties with λabs = 463 nm (ε = 13 100 M(-1) cm(-1)) for dppz-PhNMe2 and with λabs = 457 nm (ε = 16 900 M(-1) cm(-1)) for dppz-PhNPh2. This assignment is supported by CAM-B3LYP TD-DFT calculations. These ligands are strongly emissive in organic solvents and, consistent with the ILCT character, show strong solvatochromic behavior. Lippert-Mataga plots of the data are linear and yield Δµ values of 22 D for dppz-PhNPh2 and 20 D for dppz-PhNMe2. The rhenium(I) complexes are less emissive, and it is possible to measure resonance Raman spectra. These data show relative band intensities that are virtually unchanged from λexc = 351 to 532 nm, consistent with a single dominant transition in the visible region. Resonance Raman excitation profiles are solvent sensitive; these data are modeled using wavepacket theory yielding reorganization energies ranging from 1800 cm(-1) in toluene to 6900 cm(-1) in CH3CN. The excited state electronic absorption and infrared spectroscopy reveal the presence of dark excited states with nanosecond to microsecond lifetimes that are sensitive to the ancillary ligand on the rhenium. These dark states were assigned as phenazine-based (3)ILCT states by time-resolved infrared spectroscopy. Time-resolved infrared spectroscopy shows transient features in which Δν(CO) is approximately -7 cm(-1), consistent with a ligand-centered excited state. Evidence for two such states is seen in mid-infrared transient spectra.

15.
Inorg Chem ; 52(3): 1304-17, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23311357

RESUMO

Transition-metal complexes of the types [Re(CO)(3)Cl(NN)], [Re(CO)(3)py(NN)](+), and [Cu(PPh(3))(2)(NN)](+), where NN = 4,4'-bis(5-phenyl-1,3,4-oxadiazol-2-yl)-2,2'-bipyridine (OX) and 4,4'-bis(N,N-diphenyl-4-[ethen-1-yl]-aniline)-2,2'-bipyridine (DPA), have been synthesized and characterized. Crystal structures for [Re(CO)(3)Cl(DPA)] and [Cu(PPh(3))(2)(OX)]BF(4) are presented. The crystal structure of the rhenium complex shows a trans arrangement of the ethylene groups, in agreement with density functional theory calculations. The structure of the copper complex displays the planar aromatic nature of the bpy-oxadiazole ligand. Density functional theory modeling of the complexes was supported by comparison of calculated and experimental normalized Raman spectra; the mean absolute deviations of the complexes were <10 cm(-1). The Franck-Condon state was investigated using UV-vis and resonance Raman spectroscopic as well as density functional theory computational techniques. It was shown that the lowest energy absorption peaks are metal to ligand charge transfer and ligand-centered charge transfer for the oxadiazole- and diphenylaniline-substituted bipyridine ligands, respectively. The lowest energy excited states were characterized using transient emission and absorption spectroscopic techniques in conjunction with density functional theory calculations. These showed that the DPA complexes had ligand-centered nonemissive "dark" states with lifetimes ranging from 300 to 2000 ns.


Assuntos
Compostos de Anilina/química , Cobre/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Oxidiazóis/química , Rênio/química , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Teoria Quântica
16.
Chem Soc Rev ; 41(5): 1929-46, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22008975

RESUMO

This critical review discusses the applicability of vibrational spectroscopic techniques, specifically Raman and mid-infrared, to the study of molecule-based electronics through a series of examples. We focus on a number of devices currently of interest, such as solar cells, organic light emitting diodes, molecular junctions, switches and transistors. Infrared and Raman spectroscopic techniques and their variations, the main focus of this article, can be used to investigate properties such as crystallinity, multiphasic distributions in three dimensions, as well as lifetimes, structures and energetics of excited-states on ultrashort to very long timescales (210 references).

17.
Inorg Chem ; 51(15): 8307-16, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22780572

RESUMO

Two new cyclotriphosphazene ligands with pendant 2,2':6',2″-terpyridine (Terpy) moieties, namely, (pentaphenoxy){4-[2,6-bis(2-pyridyl)]pyridoxy}cyclotriphosphazene (L(1)), (pentaphenoxy){4-[2,6-terpyridin-4-yl]phenoxy}cyclotriphosphazene (L(2)), and their respective polymeric analogues, L(1P) and L(2P), were synthesized. These ligands were used to form iron(II) complexes with an Fe(II)Terpy(2) core. Variable-temperature resonance Raman, UV-visible, and Mössbauer spectroscopies with magnetic measurements aided by density functional theory calculations were used to understand the physical characteristics of the complexes. By a comparison of measurements, the polymers were shown to behave in the same way as the cyclotriphosphazene analogues. The results showed that spin crossover (SCO) can be induced to start at high temperatures by extending the spacer length of the ligand to that in L(2) and L(2P); this combination provides a route to forming a malleable SCO material.

18.
Inorg Chem ; 50(13): 6093-106, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21635016

RESUMO

The syn and anti isomers of the bi- and trinuclear Re(CO)(3)Cl complexes of 2,3,8,9,14,15-hexamethyl-5,6,11,12,17,18-hexaazatrinapthalene (HATN-Me(6)) are reported. The isomers are characterized by (1)H NMR spectroscopy and X-ray crystallography. The formation of the binuclear complex from the reaction of HATN-Me(6) with 2 equiv of Re(CO)(5)Cl in chloroform results in a 1:1 ratio of the syn and anti isomers. However, synthesis of the trinuclear complex from the reaction of HATN-Me(6) with 3 equiv of Re(CO)(5)Cl in chloroform produces only the anti isomer. syn-{(Re(CO)(3)Cl)(3)(µ-HATN-Me(6))} can be synthesized by reacting 1 equiv of Re(CO)(5)Cl with syn-{(Re(CO)(3)Cl)(2)(µ-HATN-Me(6))} in refluxing toluene. The product is isolated by subsequent chromatography. The X-ray crystal structures of syn-{(Re(CO)(3)Cl)(2)(µ-HATN-Me(6))} and anti-{(Re(CO)(3)Cl)(3)(µ-HATN-Me(6))} are presented both showing severe distortions of the HATN ligand unit and intermolecular π stacking. The complexes show intense absorptions in the visible region, comprising strong π → π* and metal-to-ligand charge-transfer (MLCT) transitions, which are modeled using time-dependent density functional theory (TD-DFT). The energy of the MLCT absorption decreases from mono- to bi- to trinuclear complexes. The first reduction potentials of the complexes become more positive upon binding of subsequent Re(CO)(3)Cl fragments, consistent with changes in the energy of the MLCT bands and lowering of the energy of relevant lowest unoccupied molecular orbitals, and this is supported by TD-DFT. The nature of the excited states of all of the complexes is also studied using both resonance Raman and picosecond time-resolved IR spectroscopy, where it is shown that MLCT excitation results in the oxidation of one rhenium center. The patterns of the shifts in the carbonyl bands upon excitation reveal that the MLCT state is localized on one rhenium center on the IR time scale.

19.
Inorg Chem ; 49(9): 4073-83, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20377232

RESUMO

A series of new cyclotriphosphazene ligands substituted with pendant 2,2'-bipyridyl moieties, namely, bis[(1,1'-biphenyl)-2,2'-dioxy](2,2'-bipyridyl-3,3'-dioxy)cyclotriphosphazene (L(1)), bis[(1,1'-biphenyl)-2,2'-dioxy][bis{4-(2,2'-bipyridin)-4-yl-phenyoxy}]cyclotriphosphazene (L(2)), (pentaphenoxy)[4-(2,2'-bipyridin)-4-yl-phenyoxy]cyclotriphosphazene (L(3)), and (pentaphenoxy) [4-{6-phenyl(2,2'-bipyridin)-4-yl}-phenoxy]cyclotriphosphazene (L(4)), has been used to synthesize the ruthenium(II) and rhenium(I) complexes, [(L)Ru(bpy)(2)](PF(6))(4) (L = L(1) or L(3)), [(L(2)) {Ru(bpy)(2)}(2)](PF(6))(4), [(L)Re(CO)(3)Cl] (L = L(1), L(3) or L(4)), and [(L(2)) {Re(CO)(3)Cl}(2)]. Single crystal X-ray structures of [(L(1))Re(CO)(3)Cl] and [(L(4))Re(CO)(3)Cl] show the bipyridyl component of the cyclotriphosphazene substituted ligands is bound to the Re(I) giving a distorted octahedral "N(2)C(3)Cl" coordination sphere in both cases. Density functional theory (DFT) methods were employed to model the ground-state vibrational properties of the molecules, and their accuracies verified using vibrational spectroscopy. Electronic transitions were identified using UV-visible and resonance Raman spectroscopic techniques, aided by time-dependent (TD) DFT methods. Transient resonance Raman spectra of the excited states of the compounds were acquired and found to be comparable to those reported for studied metal bipyridyl units lacking the cyclotriphosphazene substituents. The cyclotriphosphazene unit has little effect on the properties of the metal bipyridyl chromophore.


Assuntos
Simulação por Computador , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Compostos Organofosforados/química , Rênio/química , Rutênio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Espectrofotometria Ultravioleta , Análise Espectral Raman , Estereoisomerismo
20.
Appl Spectrosc ; 74(3): 347-356, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31868520

RESUMO

We demonstrate the performance of a dual frequency comb quantum cascade laser (QCL) spectrometer for the application of vibrational Stark spectroscopy. Measurements performed on fluorobenzene with the dual-comb spectrometer (DCS) were compared to results obtained using a conventional Fourier transform infrared (FT-IR) instrument in terms of spectral response, parameter estimation, and signal-to-noise ratio (S/N). The dual-comb spectrometer provided similar qualitative and quantitative data as the FT-IR setup in 250 times shorter acquisition time. For fluorobenzene, the DCS measurement resulted in a more precise estimation of the fluorobenzene Stark tuning rate ((0.81 ± 0.09) cm-1/(MV/cm)) than with the FT-IR system ((0.89 ± 0.15) cm-1/(MV/cm)). Both values are in accordance with the previously reported value of 0.84 cm-1/(MV/cm). We also point to an improvement of signal-to-noise ratio in the DCS configuration. Additional characteristics of the dual-comb spectrometer applicable to vibrational Stark spectroscopy and their scaling properties for future applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA