Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400503

RESUMO

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , Florestas
2.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460530

RESUMO

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , Sementes
3.
J Plant Res ; 135(1): 69-79, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34973093

RESUMO

Assessing long-term changes in the biomass of old-growth forests with consideration of climate effects is essential for understanding forest ecosystem functions under a changing climate. Long-term biomass changes are the result of accumulated short-term changes, which can be affected by endogenous processes such as gap filling in small-scale canopy openings. Here, we used 26 years (1993-2019) of repeated tree census data in an old-growth, cool-temperate, mixed deciduous forest that contains three topographic units (riparian, denuded slope, and terrace) in northern Japan to document decadal changes in aboveground biomass (AGB) and their processes in relation to endogenous processes and climatic factors. AGB increased steadily over the 26 years in all topographic units, but different tree species contributed to the increase among the topographic units. AGB gain within each topographic unit exceeded AGB loss via tree mortality in most of the measurement periods despite substantial temporal variation in AGB loss. At the local scale, variations in AGB gain were partially explained by compensating growth of trees around canopy gaps. Climate affected the local-scale AGB gain: the gain was larger in the measurement periods with higher mean air temperature during the current summer but smaller in those with higher mean air temperature during the previous autumn, synchronously in all topographic units. The influences of decadal summer and autumn warming on AGB growth appeared to be counteracting, suggesting that the observed steady AGB increase in KRRF is not fully explained by the warming. Future studies should consider global and regional environmental factors such as elevated CO2 concentrations and nitrogen deposition, and include cool-temperate forests with a broader temperature range to improve our understanding on biomass accumulation in this type of forests under climate change.


Assuntos
Ecossistema , Florestas , Biomassa , Japão , Árvores
4.
Nat Commun ; 14(1): 1113, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914632

RESUMO

Despite their fundamental importance the links between forest productivity, diversity and climate remain contentious. We consider whether variation in productivity across climates reflects adjustment among tree species and individuals, or changes in tree community structure. We analysed data from 60 plots of humid old-growth forests spanning mean annual temperatures (MAT) from 2.0 to 26.6 °C. Comparing forests at equivalent aboveground biomass (160 Mg C ha-1), tropical forests ≥24 °C MAT averaged more than double the aboveground woody productivity of forests <12 °C (3.7 ± 0.3 versus 1.6 ± 0.1 Mg C ha-1 yr-1). Nonetheless, species with similar standing biomass and maximum stature had similar productivity across plots regardless of temperature. We find that differences in the relative contribution of smaller- and larger-biomass species explained 86% of the observed productivity differences. Species-rich tropical forests are more productive than other forests due to the high relative productivity of many short-stature, small-biomass species.


Assuntos
Florestas , Árvores , Humanos , Biomassa , Madeira , Ásia Oriental , Clima Tropical
5.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386149

RESUMO

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Assuntos
Reprodução , Árvores , Fertilidade , Sementes , Saciação
6.
Ecology ; 103(4): e3624, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34967952

RESUMO

Ecologists have recently accepted the notion that species coexistence involves both niche and neutral processes, but few studies have explained how both of these opposite views can explain coexistence in the same community. Here we focus on competition among sessile organisms and explored first the extent to which species-based niche reflects local "matchups" between nearby individuals, using 726 saplings of 10 temperate tree species, and second the members engaging in the matchups, which have rarely been quantified despite the importance in mixed-species forests. Growth responses to light showed considerable species-level differences, suggesting commonly seen regeneration niches. Outcomes of the individual matchups were basically predictable from the species mean response, but also with substantial contribution of within-species variation. We found strong imbalance in matchup frequencies, such that some individuals meet more individuals of differing species but others meet fewer, as well as many isolated, competition-free ones. The niche and neutral processes appear to reflect, respectively, between- and within-species differences, and our findings suggest that even when niche segregation is discernible, the role of stochasticity for the frequency of local competition, as well as its outcomes, cannot be discounted in species coexistence.


Assuntos
Ecossistema , Florestas , Humanos , Árvores/fisiologia
7.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501313

RESUMO

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Assuntos
Florestas , Sementes , Fertilidade , Reprodução , Sementes/fisiologia , Árvores
8.
J Plant Res ; 124(1): 75-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20549293

RESUMO

Japanese horse chestnut (Aesculus turbinata: Hippocastanaceae) is one of the typical woody plants that grow in temperate riparian forests in the Japanese Archipelago. To analyze the phylogeography of this plant in the Japanese Archipelago, we determined cpDNA haplotypes for 337 samples from 55 populations covering the entire distribution range. Based on 1,313 bp of two spacers, we determined ten haplotypes that are distinguished from adjacent haplotypes by one or two steps. Most of the populations had a single haplotype, suggesting low diversity. Spatial analysis of molecular variance suggested three obvious phylogeographic structures in western Japan, where Japanese horse chestnut is scattered and isolated in mountainous areas. Conversely, no clear phylogeographic structure was observed from the northern to the southern limit of this species, including eastern Japan, where this plant is more common. Rare and private haplotypes were also found in southwestern Japan, where Japanese horse chestnuts are distributed sparsely. These findings imply that western Japan might have maintained a relatively large habitat for A. turbinata during the Quaternary climatic oscillations, while northerly regions could not.


Assuntos
Aesculus/genética , DNA de Cloroplastos/genética , Geografia , Haplótipos/genética , Filogeografia , Sequência de Bases , Variação Genética , Japão , Dados de Sequência Molecular , Nucleotídeos/genética
9.
Environ Monit Assess ; 178(1-4): 85-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20865323

RESUMO

Many indicators/indices provide information on whether the 2010 biodiversity target of reducing declines in biodiversity have been achieved. The strengths and limitations of the various measures used to assess the success of such measures are now being discussed. Biodiversity dynamics are often evaluated by a single biological population metric, such as the abundance of each species. Here we examined tree population dynamics of 52 families (192 species) at 11 research sites (three vegetation zones) of Japanese old-growth forests using two population metrics: number of stems and basal area. We calculated indices that track the rate of change in all species of tree by taking the geometric mean of changes in population metrics between the 1990s and the 2000s at the national level and at the levels of the vegetation zone and family. We specifically focused on whether indices based on these two metrics behaved similarly. The indices showed that (1) the number of stems declined, whereas basal area did not change at the national level and (2) the degree of change in the indices varied by vegetation zone and family. These results suggest that Japanese old-growth forests have not degraded and may even be developing in some vegetation zones, and indicate that the use of a single population metric (or indicator/index) may be insufficient to precisely understand the state of biodiversity. It is therefore important to incorporate more metrics into monitoring schemes to overcome the risk of misunderstanding or misrepresenting biodiversity dynamics.


Assuntos
Biodiversidade , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Monitoramento Ambiental , Japão , Árvores/classificação
10.
Appl Plant Sci ; 9(2): e11411, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33680582

RESUMO

PREMISE: Understanding the flower visitation history of individual pollinators is key in the study of pollination networks, but direct tracking is labor intensive and, more important, does not capture information about the previous interactions of an individual. Therefore, a protocol to detect most of the pollen species on the body surfaces of an individual pollinator could elucidate its flower visitation history. METHODS AND RESULTS: Under a microscope, we observed 6.0-µL droplets from a sample solution (1.0 or 3.0 mL) containing pollen grains collected from individuals of six major pollinator functional groups. To clarify how many droplets need to be observed to detect all pollen species within the solution, we examined up to 10 droplets collected from each individual insect. Sample-based rarefaction curve analyses of the data showed that we could detect ~90% of the pollen species and the plant-pollinator links in the networks by observing six droplets. CONCLUSIONS: The rarefaction curve analysis for pollen-on-pollinator studies is a useful preliminary step for minimizing the time and labor required while maximizing the data on the flower visitation history of each individual pollinator and revealing any hidden flower-pollinator interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA