Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928124

RESUMO

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Assuntos
Frutas , Macadamia , Polimorfismo de Nucleotídeo Único , Macadamia/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Autofertilização , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/efeitos dos fármacos , DNA de Plantas/genética , Nozes/genética , Nozes/crescimento & desenvolvimento , Polinização
2.
Ann Bot ; 129(2): 135-146, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34473241

RESUMO

BACKGROUND AND AIMS: Pollen limitation is most prevalent among bee-pollinated plants, self-incompatible plants and tropical plants. However, we have very little understanding of the extent to which pollen limitation affects fruit set in mass-flowering trees despite tree crops accounting for at least 600 million tons of the 9200 million tons of annual global food production. METHODS: We determined the extent of pollen limitation in a bee-pollinated, partially self-incompatible, subtropical tree by hand cross-pollinating the majority of flowers on mass-flowering macadamia (Macadamia integrifolia) trees that produce about 200 000-400 000 flowers. We measured tree yield and kernel quality and estimated final fruit set. We genotyped individual kernels by MassARRAY to determine levels of outcrossing in orchards and assess paternity effects on nut quality. KEY RESULTS: Macadamia trees were pollen-limited. Supplementary cross-pollination increased nut-in-shell yield, kernel yield and fruit set by as much as 97, 109 and 92 %, respectively. The extent of pollen limitation depended upon the proximity of experimental trees to trees of another cultivar because macadamia trees were highly outcrossing. Between 84 and 100 % of fruit arose from cross-pollination, even at 200 m (25 rows) from orchard blocks of another cultivar. Large variations in nut-in-shell mass, kernel mass, kernel recovery and kernel oil concentration were related to differences in fruit paternity, including between self-pollinated and cross-pollinated fruit, thus demonstrating pollen-parent effects on fruit quality (i.e. xenia). CONCLUSIONS: This study is the first to demonstrate pollen limitation in a mass-flowering tree. Improved pollination led to increased kernel yield of 0.31-0.59 tons ha-1, which equates currently to higher farm-gate income of approximately $US3720-$US7080 ha-1. The heavy reliance of macadamia flowers on cross-pollination and the strong xenia effects on kernel mass demonstrate the high value that pollination services can provide to food production.


Assuntos
Proteaceae , Árvores , Animais , Flores , Macadamia/genética , Pólen , Polinização , Reprodução
3.
Glob Chang Biol ; 22(9): 3157-69, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26896336

RESUMO

As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the ecological and climate systems.


Assuntos
Ciclo do Carbono , Ecossistema , Solo , Processos Autotróficos , Nitrogênio
4.
Heliyon ; 10(3): e25221, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356544

RESUMO

World tree nut production has increased rapidly by around 50 % in the past decade; however, nut defects cause losses. For example, we know that brown centres are a major internal discolouration defect in macadamia nuts and are linked to the storage of nut-in-shell under improper conditions at high temperature and humidity. However, key chemical changes in brown centre kernels have not been described. In this study, we compared brown centres and white kernels from: 1) samples that were "induced" in the laboratory by storing at high moisture concentration; and 2) samples that were dried immediately after harvest using industry best practice methods recommended by the Australian Macadamia Society (AMS). We measured the moisture concentration, sugar concentration, fatty acid concentration, peroxide value, nutrient concentration and volatile compounds of induced and AMS samples. Our results showed that storing nut-in-shell macadamia under wet and hot conditions increased brown centres compared with samples immediately dried using the AMS regime, 10.33 % vs 1.44 %, respectively. Induced brown centres had significantly higher moisture concentrations than induced white centres. Volatile compounds including nonanoic acid, octanoic acid and 2,3 butanediol were identified and associated with brown centre formation in macadamia kernels and the initiation of lipid oxidation. Our results suggest sugar hydrolysis and the Maillard reaction are associated with brown centres both in laboratory induced samples and those formed using industry best practice drying methods. Our study suggests improper drying and storage at high temperature and high humidity are likely to result in brown centre formation. We recommend brown centre losses can be reduced by appropriate drying and storage practices.

5.
Plants (Basel) ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771641

RESUMO

Tree crop yield is highly dependent on fertiliser inputs, which are often guided by the assessment of foliar nutrient levels. Traditional methods for nutrient analysis are time-consuming but hyperspectral imaging has potential for rapid nutrient assessment. Hyperspectral imaging has generally been performed using the adaxial surface of leaves although the predictive performance of spectral data has rarely been compared between adaxial and abaxial surfaces of tree leaves. We aimed to evaluate the capacity of laboratory-based hyperspectral imaging (400-1000 nm wavelengths) to predict the nutrient concentrations in macadamia leaves. We also aimed to compare the prediction accuracy from adaxial and abaxial leaf surfaces. We sampled leaves from 30 macadamia trees at 0, 6, 10 and 26 weeks after flowering and captured hyperspectral images of their adaxial and abaxial surfaces. Partial least squares regression (PLSR) models were developed to predict foliar nutrient concentrations. Coefficients of determination (R2P) and ratios of prediction to deviation (RPDs) were used to evaluate prediction accuracy. The models reliably predicted foliar nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), copper (Cu), manganese (Mn), sulphur (S) and zinc (Zn) concentrations. The best-fit models generally predicted nutrient concentrations from spectral data of the adaxial surface (e.g., N: R2P = 0.55, RPD = 1.52; P: R2P = 0.77, RPD = 2.11; K: R2P = 0.77, RPD = 2.12; Ca: R2P = 0.75, RPD = 2.04). Hyperspectral imaging showed great potential for predicting nutrient status. Rapid nutrient assessment through hyperspectral imaging could aid growers to increase orchard productivity by managing fertiliser inputs in a more-timely fashion.

6.
PLoS One ; 17(6): e0269485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657926

RESUMO

Pollen-parent effects on fruit size and quality have been found previously among competing self-pollinated and cross-pollinated fruit on the same Redlands Joy strawberry plant. These effects occur independently of the percentage of fertilized seeds on the fruit, but the expression of these effects on fruit size and some aspects of quality are greatest when calcium is in shortest supply. Here, we aimed to clarify at what developmental stages the self-pollinated and cross-pollinated fruit diverge in size and quality and whether differences between self-pollinated and cross-pollinated fruit are due to early differences in nutrient accumulation. Fruit were harvested at 1, 2 and 3 weeks after hand-pollination and at full ripeness, approximately 4 weeks after hand-pollination. We measured fruit mass, length, diameter, colour, and the concentrations of aluminium, boron, calcium, copper, iron, nitrogen, magnesium, manganese, sodium, phospho-rous, potassium and zinc. Temporary increases in fruit mass, length or diameter due to cross-pollination were evident at 1 or 2 weeks after pollination. Consistent increases in size and skin darkness from cross-pollination emerged in the final week of fruit development. We found little evidence that self-pollinated and cross-pollinated fruit differed in mineral nutrient accumulation at any stage of fruit development. The results demonstrate that cross-pollination effects on strawberry fruit size are evident briefly during early fruit growth but emerge mainly during the final week of fruit development. The effects of cross-pollination on fruit size are not the result of early differences in mineral nutrient accumulation between self-pollinated and cross-pollinated fruit.


Assuntos
Fragaria , Biomassa , Cálcio/metabolismo , Frutas , Minerais/metabolismo , Nutrientes , Polinização
7.
Plants (Basel) ; 9(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053871

RESUMO

Tree nuts play an important role in healthy diets, but their economic value and nutritional quality may be affected by their size and paternity. We assessed relationships between nut size and kernel recovery, the incidence of whole kernels, fatty acid composition and mineral nutrient concentrations in three macadamia cultivars, "Daddow", "816" and "A4". We determined to what extent differences in nut size and quality were the result of different levels of cross- or self-paternity. Small nuts of all cultivars had lower kernel recovery than large nuts, and small nuts provided lower incidence of whole kernels in "Daddow" and "A4". Small kernels had a lower relative abundance of the saturated fatty acid, palmitic acid, in all cultivars and higher relative abundance of the unsaturated fatty acid, oleic acid, in "Daddow" and "A4". Small kernels had higher concentrations of many essential nutrients such as nitrogen and calcium, although potassium concentrations were lower in small kernels. Most nuts arose from cross-pollination. Therefore, nut size and kernel quality were not related to different levels of cross- and self-paternity. Identified cross-paternity was 88%, 78% and 90%, and identified self-paternity was 3%, 2% and 0%, for "Daddow", "816" and "A4", respectively. Small macadamia kernels are at least as nutritious as large macadamia kernels. High levels of cross-paternity confirmed that many macadamia cultivars are predominantly outcrossing. Macadamia growers may need to closely inter-plant cultivars and manage beehives to maximise cross-pollination.

8.
Environ Sci Pollut Res Int ; 26(21): 22021-22029, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31144175

RESUMO

The selection of shade trees with appropriate spacing is important for minimising their impact on nutrient accumulation by understorey cash crops in agroforestry systems. Cocoa trees may be intercropped with overstorey legume or non-legume shade trees. A legume tree and/or a non-legume timber tree with edible kernels (Gliricidia sepium and Canarium indicum, respectively) are used as shade trees in cocoa plantations particularly in Papua New Guinea. This study explored the nutrient concentrations of cocoa beans in response to both tree-shade species and shade-tree spacing regime. The study also investigated the extent to which C. indicum tree spacing altered the nutrient concentrations of canarium kernels. G. sepium trees in the study had a final spacing of 12 m × 12 m while the spacing regimes of either 8 m × 8 m or 8 m × 16 m used for C. indicum. The calcium (Ca) concentrations of cocoa beans did not differ significantly between plants located next to G. sepium and plants located next to C. indicum. Cocoa beans next to C. indicum trees with spacing of 8 m × 16 m had higher potassium (K) concentrations than those next to G. sepium trees. However, phosphorus (P) concentrations of cocoa beans next to C. indicum trees with spacing of 8 m × 8 m or next to G. sepium trees were significantly higher than those next to C. indicum trees with spacing of 8 m × 16 m. The K concentrations in cocoa beans and soil were not correlated nor were the P concentrations in cocoa beans and soil. Correlations between nutrients in leaves and cocoa beans, or between leaves and canarium kernels, were not strong. Our results suggest that cocoa and canarium trees can be intercropped successfully, and that they do not compete for soil nutrients.


Assuntos
Agricultura/métodos , Cacau/química , Minerais/análise , Produtos Agrícolas , Fabaceae/fisiologia , Nutrientes/análise , Nozes , Papua Nova Guiné , Fósforo/análise , Solo , Árvores/fisiologia
9.
Environ Sci Pollut Res Int ; 24(34): 26485-26496, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948525

RESUMO

Ethylenediaminetetraacetic acid (EDTA) used with electrokinetic (EK) to remediate heavy metal-polluted soils is a toxic chelate for soil microorganisms. Therefore, this study aimed to evaluate the effects of alternative organic chelates to EDTA on improving the microbial properties of a heavy metal-polluted soil subjected to EK. Cow manure extract (CME), poultry manure extract (PME) and EDTA were applied to a lead (Pb) and zinc (Zn)-polluted calcareous soil which were subjected to two electric intensities (1.1 and 3.3 v/cm). Soil carbon pools, microbial activity, microbial abundance (e.g., fungal, actinomycetes and bacterial abundances) and diethylenetriaminepentaacetic acid (DTPA)-extractable Pb and Zn (available forms) were assessed in both cathodic and anodic soils. Applying the EK to soil decreased all the microbial variables in the cathodic and anodic soils in the absence or presence of chelates. Both CME and PME applied with two electric intensities decreased the negative effect of EK on soil microbial variables. The lowest values of soil microbial variables were observed when EK was combined with EDTA. The following order was observed in values of soil microbial variables after treating with EK and chelates: EK + CME or EK + PME > EK > EK + EDTA. The CME and PME could increase the concentrations of available Pb and Zn, although the increase was less than that of EDTA. Overall, despite increasing soil available Pb and Zn, the combination of EK with manures (CME or PME) mitigated the negative effects of using EK on soil microbial properties. This study suggested that the synthetic chelates such as EDTA could be replaced with manures to alleviate the environmental risks of EK application.


Assuntos
Quelantes/toxicidade , Ácido Edético/toxicidade , Recuperação e Remediação Ambiental/métodos , Esterco , Metais Pesados/análise , Microbiologia do Solo , Poluentes do Solo/análise , Animais , Quelantes/química , Ácido Edético/química , Eletricidade , Eletrodos , Cinética , Solo/química
10.
PLoS One ; 12(9): e0184279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902859

RESUMO

Roasting nuts may alter their chemical composition leading to changes in their health benefits. However, the presence of testa may alleviate the negative effects of thermal treatments. Hence, this study aimed to explore the effects of roasting on kernel chemical quality and colour development of Canarium indicum and examine to what extent testa would protect kernels against damage from roasting. Roasting decreased peroxide value but increased free fatty acid, probably due to increased cell destruction and lack of enzyme inactivation, respectively. Protein content of kernels significantly decreased after roasting compared to raw kernels. However, testa-on kernels contained significantly higher protein content compared to testa-off kernels. Whilst colour development and mottling were observed in temperatures beyond 120°C, roasting did not alter fatty acid compositions of kernels. The mild roasting and presence of testa in kernels can be used to enhance health benefits of kernels.


Assuntos
Culinária , Ácidos Graxos/análise , Manipulação de Alimentos/métodos , Nozes/química , Peróxidos/análise , Proteínas/análise , Antioxidantes/análise , Culinária/métodos , Temperatura Alta/efeitos adversos , Metabolismo dos Lipídeos , Valor Nutritivo , Nozes/metabolismo , Óleos de Plantas/análise , Óleos de Plantas/metabolismo , Sementes/química
11.
Environ Sci Pollut Res Int ; 22(8): 6112-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25395326

RESUMO

Biochar has significant potential to improve crop performance. This study examined the effect of biochar application on the photosynthesis and yield of peanut crop grown on two soil types. The commercial peanut cultivar Middleton was grown on red ferrosol and redoxi-hydrosol (Queensland, Australia) amended with a peanut shell biochar gradient (0, 0.375, 0.750, 1.50, 3.00 and 6.00%, w/w, equivalent up to 85 t ha(-1)) in a glasshouse pot experiment. Biomass and pod yield, photosynthesis-[CO2] response parameters, leaf characteristics and soil properties (carbon, nitrogen (N) and nutrients) were quantified. Biochar significantly improved peanut biomass and pod yield up to 2- and 3-folds respectively in red ferrosol and redoxi-hydrosol. A modest (but significant) biochar-induced improvement of the maximum electron transport rate and saturating photosynthetic rate was observed for red ferrosol. This response was correlated to increased leaf N and accompanied with improved soil available N and biological N fixation. Biochar application also improved the availability of other soil nutrients, which appeared critical in improving peanut performance, especially on infertile redoxi-hydrosol. Our study suggests that application of peanut shell derived biochar has strong potential to improve peanut yield on red ferrosol and redoxi-hydrosol. Biochar soil amendment can affect leaf N status and photosynthesis, but the effect varied with soil type.


Assuntos
Arachis/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Fotossíntese/fisiologia , Solo/química , Arachis/efeitos dos fármacos , Biomassa , Carbono/análise , Relação Dose-Resposta a Droga , Transporte de Elétrons/efeitos dos fármacos , Nitrogênio/análise , Fotossíntese/efeitos dos fármacos , Queensland
12.
Environ Sci Pollut Res Int ; 21(7): 5167-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24390117

RESUMO

During revegetation, the maintenance of soil carbon (C) pools and nitrogen (N) availability is considered essential for soil fertility and this study aimed to evaluate contrasting methods of site preparation (herbicide and scalping) with respect to the effects on soil organic matter (SOM) during the critical early establishment phase. Soil total C (TC), total N (TN), hot-water extractable organic C (HWEOC), hot-water extractable total N (HWETN), microbial biomass C and N (MBC and MBN), total inorganic N (TIN) and potentially mineralizable N (PMN) were measured over 53 weeks. MBC and MBN were the only variables affected by herbicide application. Scalping caused an immediate reduction in all variables, and the values remained low without any sign of recovery for the period of the study. The impact of scalping on HWETN and TIN lasted 22 weeks and stabilised afterwards. MBC and MBN were affected by both herbicide and scalping after initial treatment application and remained lower than control during the period of the study but did not decrease over time. While scalping had an inevitable impact on all soil properties that were measured, that impact did not worsen over time, and actually improved plant growth (unpublished data) while reducing site establishment costs. Therefore, it provides a useful alternative for weed control in revegetation projects where it is applied only once at site establishment and where SOM would be expected to recover as canopy closure is obtained and nutrient cycling through litterfall commences.


Assuntos
Carbono/análise , Herbicidas/toxicidade , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Biodegradação Ambiental , Biomassa , Ciclo do Carbono , Ciclo do Nitrogênio , Desenvolvimento Vegetal , Queensland
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA