Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(15): e202320137, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38362792

RESUMO

Membrane separation of aromatics and aliphatics is a crucial requirement in chemical and petroleum industries. However, this task presents a significant challenge due to the lack of membrane materials that can endure harsh solvents, exhibit molecular specificity, and facilitate easy processing. Herein, we present a novel approach to fabricate a covalent triazine framework (CTF) membrane by employing a mix-monomer strategy. By incorporating a spatial monomer alongside a planar monomer, we were able to subtly modulate both the pore aperture and membrane affinity, enabling preferential permeation of aromatics over aliphatics with molecular weight below 200 Dalton (Da). Consequently, we achieved successful all-liquid phase separation of aromatic/aliphatic mixtures. Our investigation revealed that the synergistic effects of size sieving and the affinity between the permeating molecules and the membrane played a pivotal role in separating these closely resembling species. Furthermore, the membrane exhibited remarkable robustness under practical operating conditions, including prolonged operation time, various feed compositions, different applied pressure, and multiple feed components. This versatile strategy offers a feasible approach to fabricate membranes with molecule selectivity toward aromatic/aliphatic mixtures, taking a significant step forward in addressing the grand challenge of separating small organic molecules through membrane technology.

2.
J Am Chem Soc ; 145(32): 17786-17794, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37537964

RESUMO

Ion transport through nanoconfinement, driven by both electrical and mechanical forces, has drawn ever-increasing attention, due to its high similarity to stress-sensitive ion channels in biological systems. Previous studies have reported only pressure-induced enhancement in ion conductance in low-permeable systems such as nanotubes, nanoslits, or single nanopores. This enhancement is generally explained by the ion accumulation caused by the capacitive effect in low-permeable systems. Here, we fabricate a highly permeable COF monolayer membrane to investigate ion transport behavior driven by both electrical and mechanical forces. Our results show an anomalous conductance reduction activated by external mechanical force, which is contrary to the capacitive effect-dominated conductance enhancement observed in low-permeable nanopores or channels. Through simulations, we uncovered a distinct electrical-mechanical interplay mechanism that depends on the relative rate between the ion diffusion from the boundary layer to the membrane surface and the ion transport through the membrane. The high pore density of the COF monolayer membrane reduces the charge accumulation caused by the capacitive effect, resulting in fewer accumulated ions near the membrane surface. Additionally, the high membrane permeability greatly accelerates the dissipation of the accumulated ions under mechanical pressure, weakening the effect of the capacitive layer on the streaming current. As a result, the ions accumulated on the electrodes, rather than in the capacitive layer, dominating the streaming current and giving rise to a distinct electrical-mechanical interplay mechanism compared to that in low-permeable nanopores or channels. Our study provides new insights into the interplay between electrical and mechanical forces in ultra-permeable systems.

3.
Anal Chem ; 95(13): 5514-5521, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943917

RESUMO

Hydrogen sulfide (H2S), a gaseous signaling molecule, is involved in a wide range of physiological and pathological processes. H2S has been proven to play a beneficial role in lung diseases, and the relationship between perturbations in endogenous H2S synthesis and degree with idiopathic pulmonary fibrosis (IPF) has attacted increasing attention. However, the changes in endogenous lung H2S levels in the pathological progression of chronic pulmonary diseases remain unclear. To this end, we synthesized a fluorescent probe (Bcy-HS) for the selective imaging of H2S in living cells and mice. This probe was mainly used for in situ in vivo and cellular imaging as well as a systematic assessment of intrapulmonary H2S levels at different stages of IPF. In addition, we also discussed the potential of H2S supplementation in the treatment of pulmonary fibrotic diseases. Our results confirmed the key role of H2S in pulmonary fibrosis. In cellular and mice models of pulmonary fibrosis, intracellular H2S levels are reduced. However, the severity of oxidative damage and pulmonary fibrosis decreased after NaSH (H2S donor). Therefore, we concluded that increasing the H2S content in vivo may be a novel strategy for IPF treatment.


Assuntos
Sulfeto de Hidrogênio , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Corantes Fluorescentes , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose , Células HeLa
4.
Nano Lett ; 20(2): 1447-1454, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31975594

RESUMO

Black phosphorus nanosheets (BPNSs) have been actively employed as nanomedicine agents for photothermal and photodynamic therapy by virtue of their unique optical properties. However, their chemical reactivity as a competent biomaterial has not been fully explored yet. Here, we report on the use of BPNSs as reactive oxygen species (ROS) scavengers to cure acute kidney injury (AKI) in mice. Importantly, in vivo analysis in mice revealed that BPNSs were preferably accumulated in kidney. We found that BPNSs alleviated oxidative-pressure-induced cellular apoptosis. In a ROS-triggered acute kidney injury (AKI) model, BPNSs effectively consumed ROS in kidney, demonstrating high efficacy for curing AKI. BPNSs also exhibited excellent biocompatibility and biodegradability, making them promising candidates for therapeutic treatment of AKI and other renal diseases.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Antioxidantes/farmacologia , Nanoestruturas/química , Fósforo/farmacologia , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/ultraestrutura , Camundongos , Fósforo/química , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo
5.
Angew Chem Int Ed Engl ; 59(15): 6244-6248, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958197

RESUMO

Precise control of ion transport is a fundamental characteristic for the sustainability of life. It remains a great challenge to develop practical and high-performance artificial ion-transport system that can allow active transport of ions (protons) in an all solid-state nanoporous material. Herein, we develop a Janus microporous membrane by combining reduced graphene oxide (rGO) and conjugated microporous polymer (CMP) for controllable photodriven ion transport. Upon light illumination, a net ionic current is generated from the CMP to the rGO side of the membrane, indicating that the rGO/CMP Janus membrane can realize photodriven directional and anti-gradient ion transport. Analogously to the p-n junction in photovoltaic devices, light is firstly converted into separated charges to trigger a transmembrane potential, which subsequently drives directional ion movement. For the first time, this method enables integration of a photovoltaic effect with an ionic field to drive active ion transport. With the advantages of scaled up production and easy fabrication, the concept of photovoltaic ion transport based on Janus microporous membrane may find wide application in energy storage and conversion, photodriven ion-sieving, and water treatment.

6.
Tumour Biol ; 35(12): 12707-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25217323

RESUMO

Excision repair cross-complementing gene 1 (ERCC1) protein is proposed as a predictor for cisplatin efficacy in patients with non-small cell lung cancer (NSCLC). However, recent studies declare that ERCC1 is not associated with the response of platinum-based chemotherapy or clinical outcomes. The purpose of this study is to assess whether ERCC1 expression level is linked to cisplatin sensitivity and clinical outcomes in resected NSCLC patients. Paraffin-embedded cancer samples from 112 patients were used for immunohistochemical staining. Cancer cells isolated from fresh tumor tissues were used to determine the sensitivity to cisplatin by MTT assay. The association between ERCC1 expression and cisplatin sensitivity was tested by Spearman's rho test. The correlation of ERCC1 expression with clinicopathologic parameters was evaluated by the chi-square tests. The relationship between variables and survival was assessed by log-rank test. Overall survival (OS) and disease-free survival (DFS) curves were plotted by the Kaplan-Meier method. Cox proportional hazards model was used for multivariate analysis of survival. ERCC1 expression was significantly correlated with the sensitivity of cisplatin in vitro (p < 0.01, r = 0.37). ERCC1 was not associated with OS (p = 0.17) or DFS (p = 0.13) in patients with resected NSCLC. ERCC1 is not a sensible marker for the choice of treatment in clinical patients with resected NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/administração & dosagem , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Endonucleases/metabolismo , Feminino , Expressão Gênica , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Fatores de Risco , Resultado do Tratamento
7.
Front Plant Sci ; 15: 1285050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357268

RESUMO

The Brassicaceae is a worldwide family that produces ornamental flowers, edible vegetables, and oilseed plants, with high economic value in agriculture, horticulture, and landscaping. This study used the Web of Science core dataset and the CiteSpace bibliometric tool to quantitatively visualize the number of publications, authors, institutions, and countries of 3139 papers related to Brassicaceae plants from 2002 to 2022. The keywords and references were divided into two phases: Phase 1 (2002-2011) and Phase 2 (2012-2022) for quantitative and qualitative analysis. The results showed: An average annual publication volume of 149 articles, with an overall fluctuating upward trend; the research force was mainly led by Professor Ihsan A. Al-shehbaz from Missouri Botanical Garden; and the United States had the highest number of publications. In the first phase, research focused on the phylogeny of Brassicaceae plants, while the second phase delved into diverse research based on previous studies, research in areas such as polyploidy, molecular technique, physiology, and hyperaccumulator has been extended. Based on this research, we propounded some ideas for future studies on Brassicaceae plants and summarized the research gaps.

8.
ACS Nano ; 18(28): 18673-18682, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951732

RESUMO

Separating xylene isomers is a challenging task due to their similar physical and chemical properties. In this study, we developed a molecular sieve incorporating a reduced graphene oxide (rGO) membrane for the precise differentiation of xylene isomers. We fabricated GO membranes using a vacuum filtration technique followed by thermal-induced reduction to produce rGO membranes with precisely controllable interlayer spacing. Notably, we could finely tune the interlayer spacing of the rGO membrane from 8.0 to 5.0 Å by simply varying the thermal reduction temperature. We investigated the reverse osmosis separation ability of the rGO membranes for xylene isomers and found that the rGO membrane with an interlayer spacing of 6.1 Å showed a high single component permeance of 0.17 and 0.04 L m-2 h-1 bar-1 for para- and ortho-xylene, respectively, exhibiting clear permselectivity. The separation factor reached 3.4 and 2.8 when 90:10 and 50:50 feed mixtures were used, respectively, with permeance 1 order of magnitude higher than that of current state-of-the-art reverse osmosis membranes. Additionally, the membrane showed negligible permeance and selectivity decay even after continuous operation for more than 5 days, suggesting commendable membrane resistance to solvent swelling and operating pressure.

9.
Environ Sci Pollut Res Int ; 30(7): 17497-17515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36195812

RESUMO

Based on the traditional "EKC" theory, this paper examines the impact of urban-rural income disparity on environmental pollution in Chinese cities above the prefecture level from 2005 to 2015 using nonlinear models and spatial correlation models and tests the mechanism of action from two perspectives: demand scale and human capital. The results show that the urban-rural income gap has an obvious "inverted U-shaped" trend on environmental pollution. Both demand size and human capital are the main mechanisms affecting the environmental pollution effect of the urban-rural income gap, and the marginal pollution effects of both are "negative first and then positive" as the urban-rural income gap widens. The pollution effects of the urban-rural income gap are significantly spatially correlated at both the national and regional scales. The strength of environmental regulation is an important factor affecting the urban-rural income gap and has a significant "U-shaped" effect on regional pollution through the urban-rural income gap.


Assuntos
Poluição do Ar , Poluição Ambiental , Humanos , Poluição do Ar/análise , China , Cidades , Renda , População Rural , Fatores Socioeconômicos
10.
Sci Total Environ ; 892: 164653, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37295524

RESUMO

Addressing global climate change requires countries to achieve economic decarbonization. However, there is currently no appropriate indicator to measure a country's economic decarbonization. In this study, we define a "decarbonization value-added (DEVA)" indicator of environmental cost internalization, construct a DEVA accounting framework that takes into account trade and investment activities, and provide a Chinese story of "decarbonization without borders". The results show that pure domestic production activities involving production linkages between pure domestic-owned enterprises (DOEs) are the main source of DEVA in China, and therefore production linkages between DOEs should be strengthened. Although trade-related DEVA is higher than that of related to foreign direct investment (FDI) DEVA, the impact of FDI-related production activities on China's economic decarbonization is increasing. This impact is mainly reflected in high-tech manufacturing and trade and transportation industries. Further, we divided four FDI-related production modes. It is found that the upstream production mode of DOEs (i.e. "DOEs-DOEs" type, "DOEs-foreign-invested enterprises" type) leads to the main position of DEVA in China's FDI-related DEVA, and the overall trend is increasing. These findings help us better understand the impact of trade and investment activities on a country's economic and environmental sustainability, and thus provide an important reference for a country to formulate sustainable development policies centered on economic decarbonization.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Dióxido de Carbono/análise , Investimentos em Saúde , China , Internacionalidade
11.
Environ Sci Pollut Res Int ; 29(53): 80297-80311, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35715675

RESUMO

With economic growth, China's energy consumption and industrial agglomeration have increased significantly. This paper uses China's provincial-level energy-intensive industries from 2004 to 2017 as the research object and employs a multi-dimensional panel fixed effect model to investigate the impact of industrial agglomeration on energy efficiency and its mechanism. Results show the following: (1) In general, industrial agglomeration and energy efficiency have a significant "inverted U-shaped" relationship, with an inflection point of 3.309. As the degree of agglomeration increases, energy efficiency first increases and then decreases, but the degree of agglomeration does not cross the inflection point. (2) The impact of industrial agglomeration on energy efficiency has regional heterogeneity. In the eastern and central regions, there is no significant non-linear relationship between industrial agglomeration and energy efficiency but a monotonous positive correlation. In the western region, industrial agglomeration has a significant "inverted U-shaped" impact on energy efficiency, with an inflection point of 3.495, but the agglomeration degree is still on the left of the inflection point, suggesting that a moderate increase in agglomeration is conducive to the improvement of energy efficiency. (3) Industrial agglomeration improves energy efficiency by increasing human capital and promoting fixed asset investment. Therefore, this paper argues that the agglomeration of energy-intensive industries in various regions should be increased to improve energy efficiency. However, it is necessary to raise the industrial threshold in the western region to prevent industrial agglomeration from crossing the inflection point.


Assuntos
Conservação de Recursos Energéticos , Indústrias , China , Desenvolvimento Econômico , Eficiência
12.
J Mater Chem B ; 10(41): 8432-8442, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36189622

RESUMO

Nanoparticle-based phototherapies, such as photodynamic therapy (PDT) and photothermal therapy (PTT) are effective methods for tumor theranostics. However, there are still some problems such as lack of specificity to the special internal environment and difficulty in tumor localization. In this study, we design a near-infrared (NIR) fluorescent guided tumor therapy nanoplatform Cy-C-S-NPs for tumor therapy and precise localization. First, we synthesized a near-infrared fluorescent dye Cy-DM, combined with excellent optical and PDT/PTT properties. Interestingly, it binds Cy7 to the azo bond and mercaptoacetic acid and in the meanwhile the azo bond can be broken specifically under the condition of tumor hypoxia. Then the Au-S bond is covalently coupled with C-S-NPs, a gold nanomaterial similar to waxberry with surface-enhanced Raman function, to form the Cy-C-S-NP nanomaterial and achieve Raman imaging. In a non-anoxic environment, Cy-DM fluorescence is quenched by C-S-NPs. The unique hypoxic microenvironment of tumor cells leads to the breaking of azo bonds, releasing Cy-DM and producing fluorescence. Accurate tumor localization based on near infrared imaging diagnosis and dependent on the release of Cy-DM and C-S-NPs, PDT/PTT therapy can be performed effectively. This study provides an interesting nanoplatform that combines the functions of PDT/PTT with dual imaging effects of fluorescence and Raman imaging. This multifunctional nanoplatform may be a promising nanoplatform for targeted tumor imaging and precision therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Medicina de Precisão , Humanos , Corantes Fluorescentes , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Medicina de Precisão/métodos
13.
J Hazard Mater ; 424(Pt B): 127425, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634705

RESUMO

Hydrogen peroxide (H2O2) is an important active oxygen species that plays a major role in redox balance and in physiological and pathological processes of various diseases of biological systems. As H2O2 is an endogenous active molecule, fluctuations in H2O2 content are not only affected by the state of biological system itself but also easily affected by Bisphenol A (BPA, a typical estrogenic environmental pollutant) in the external environment. Here, the near-infrared fluorescent probe Cy-NOH2 (λem = 750 nm) as a tool was synthesized to detect fluctuations in H2O2 content in cells and organisms induced by BPA. High sensitivity and excellent selectivity were found when the probe Cy-NOH2 was used to monitor endogenous H2O2 in vitro. In addition, the expression of H2O2 induced by different concentrations of BPA was able to be detected by the probe. Zebrafish and mice models were induced with different concentrations of BPA, and the H2O2 content showed significant increasing trends in zebrafish and livers of mice with increasing BPA concentrations. This study reveals that the probe Cy-NOH2 can be used as an effective tool to monitor the redox state in vivo under the influence of BPA, which provides a basis for clarifying the mechanisms of BPA in a variety of physiological and pathological processes.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Animais , Compostos Benzidrílicos , Camundongos , Oxirredução , Fenóis , Peixe-Zebra
14.
Nat Nanotechnol ; 17(6): 622-628, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469012

RESUMO

Osmotic power, also known as 'blue energy', is produced by mixing solutions of different salt concentrations, and represents a vast, sustainable and clean energy source. The efficiency of harvesting osmotic power is primarily determined by the transmembrane performance, which is in turn dependent on ion conductivity and selectivity towards positive or negative ions. Atomically or molecularly thin membranes with a uniform pore environment and high pore density are expected to possess an outstanding ion permeability and selectivity, but remain unexplored. Here we demonstrate that covalent organic framework monolayer membranes that feature a well-ordered pore arrangement can achieve an extremely low membrane resistivity and ultrahigh ion conductivity. When used as osmotic power generators, these membranes produce an unprecedented output power density over 200 W m-2 on mixing the artificial seawater and river water. This work opens up the application of porous monolayer membranes with an atomically precise structure in osmotic power generation.

15.
Chem Asian J ; 16(22): 3624-3629, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34546656

RESUMO

Covalent organic frameworks (COFs) are promising materials for membrane separation thanks to their adjustable topological structures and surface properties of nanopores. Herein, a melamine (Me)-doped COF membrane was fabricated by chemically doping the melamine monomer into TpPa COF, which is formed by the condensation reaction between the 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa) monomers via interfacial polymerization. The introduction of melamine monomer allows altering both the pore structure and pore surface of the TpPa COF membrane, leading to enhanced hydrogen purification performance. Specifically, the separation factor of H2 /CO2 gas mixture by using the melamine doped TpPa COF (TpPaMe COF) membrane reaches 12.7, with a hydrogen permeance of 727 GPU, in sharp contrast to the relatively low separation factor and gas permeance of 7.5 and 618 GPU of the undoped TpPa membrane. Besides, the TpPaMe COF membrane shows good running stability, with H2 /CO2 separation performance well surpasses the Robeson 2008 upper bound.

16.
Chem Commun (Camb) ; 57(37): 4536-4539, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956003

RESUMO

DNA nanoswitches on cell surfaces could respond to changes of pH under physiological conditions by switching from a three-chain structure to a double-chain structure, thus connecting another set of cells modified with complementary single-stranded DNA. This pH-triggered cell communication offers a promising approach for cell-based therapy under a tumor microenvironment.


Assuntos
DNA/química , Nanoestruturas/química , Comunicação Celular , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio
17.
Med Phys ; 48(2): 648-658, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33300143

RESUMO

PURPOSE: Retinal vein occlusion (RVO) is the second most common cause of vision loss after diabetic retinopathy due to retinal vascular disease. Retinal nonperfusion (RNP), identified on fluorescein angiograms (FA) and appearing as hypofluorescence regions, is one of the most significant characteristics of RVO. Quantification of RNP is crucial for assessing the severity and progression of RVO. However, in current clinical practice, it is mostly conducted manually, which is time-consuming, subjective, and error-prone. The purpose of this study is to develop fully automated methods for segmentation of RNP using convolutional neural networks (CNNs). METHODS: FA images from 161 patients were analyzed, and RNP areas were annotated by three independent physicians. The optimal method to use multi-physicians' labeled data to train the CNNs was evaluated. An adaptive histogram-based data augmentation method was utilized to boost the CNN performance. CNN methods based on context encoder module were developed for automated segmentation of RNP and compared with existing state-of-the-art methods. RESULTS: The proposed methods achieved excellent agreements with physicians for segmentation of RNP in FA images. The CNN performance can be improved significantly by the proposed adaptive histogram-based data augmentation method. Using the averaged labels from physicians to train the CNNs achieved the best consensus with all physicians, with a mean accuracy of 0.883±0.166 with fivefold cross-validation. CONCLUSIONS: We reported CNN methods to segment RNP in RVO in FA images. Our work can help improve clinical workflow, and can be useful for further investigating the association between RNP and retinal disease progression, as well as for evaluating the optimal treatments for the management of RVO.


Assuntos
Oclusão da Veia Retiniana , Angiofluoresceinografia , Humanos , Redes Neurais de Computação , Oclusão da Veia Retiniana/diagnóstico por imagem , Tomografia de Coerência Óptica , Acuidade Visual
18.
Spine J ; 21(1): 160-177, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800896

RESUMO

BACKGROUND: Low-tension traction is more effective than high-tension traction in restoring the height and rehydration of a degenerated disc and to some extent the bony endplate. This might better reshape the microenvironment for disc regeneration and repair. However, the repair of the combination of endplate sclerosis, osteophyte formation, and even collapse leading to partial or nearly complete occlusion of the nutrient channel is greatly limited. PURPOSE: To evaluate the effectiveness of low-intensity extracorporeal shock wave therapy (ESWT) combined with low tension traction for regeneration and repair of moderately and severely degenerated discs; to explore the possible mechanism of action. STUDY DESIGN: Animal study of a rat model of degenerated discs. METHODS: A total of thirty-five 6-month old male Sprague-Dawley rats were randomly assigned to one of five groups (n=7, each group). In Group A (model group), caudal vertebrae were immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) whereas Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration. In Group B (experimental control group), as in Group A, disc degeneration was successfully induced after which the fixed device was removed for 8 weeks of self-recovery. The remaining three groups of rats represented the intervention Groups (C-E): after successful generation of disc degeneration in Group C (com - 4w/tra - 4w) and Group D (com - 4w/ESWT), as described for group A, low-tension traction (in-situ traction) or low-energy ESWT was administered for 4 weeks (ESWT parameters: intensity: 0.15 Mpa; frequency: 1 Hz; impact: 1,000 each time; once/week, 4 times in total); Group E (com - 4w/tra - 4w/ESWT): disc degeneration as described for group A, low-tension traction combined with low-energy ESWT was conducted (ESWT parameters as Group D). After experimentation, caudal vertebrae were harvested and disc height, T2 signal intensity, disc morphology, total glycosaminoglycan (GAG) content, gene expression, structure of the Co8-Co9 bony endplates and elastic moduli of the discs were measured. RESULTS: After continuous low-tension traction, low energy ESWT intervention or combined intervention, the degenerated discs effectively recovered their height and became rehydrated. However, the response in Group D was weaker than in the other intervention groups in terms of restoration of intervertebral disc (IVD) height, whereas Group E was superior in disc rehydration. Tissue regeneration was evident in Groups C to E using different interventions. No apparent tissue regeneration was observed in the experimental control group (Group B). The histological scores of the three intervention groups (Groups C-E) were lower than those of Groups A or B (p<.0001), and the scores of Groups C and E were significantly lower than those of Group D (p<.05), but not Group C versus Group E (p>.05). Compared with the intervention groups (Groups C-E), total GAG content of the nucleus pulposus (NP) in Group B did not increase significantly (p>.05). There was also no significant difference in the total GAG content between Groups A and B (p>.05). Of the three intervention groups, the recovery of NP GAG content was greatest in Group E. The expression of collagen I and II, and aggrecan in the annulus fibrosus (AF) was up-regulated (p<.05), whereas the expression of MMP-3, MMP-13, and ADAMTS-4 was down-regulated (p<.05). Of the groups, Group E displayed the greatest degree of regulation. The trend in regulation of gene expression in the NP was essentially consistent with that of the AF, of which Group E was the greatest. In the intervention groups (Groups C-E), compared with Group A, the pore structure of the bony endplate displayed clear changes. The number of pores in the endplate in Groups C to E was significantly higher than in Group A (p<.0001), among which Group C versus Group D (p=.9724), and Group C versus Group E (p=.0116). There was no significant difference between Groups A and B (p=.5261). In addition, the pore diameter also increased, the trend essentially the same as that of pore density. There was no significant difference between the three intervention groups (p=.7213). It is worth noting that, compared with Groups A and B, peripheral pore density and size in Groups D and E of the three intervention groups recovered significantly. The elastic modulus and diameter of collagen fibers in the AF and NP varied with the type of intervention. Low tension traction combined with ESWT resulted in the greatest impact on the diameter and modulus of collagen fibers. CONCLUSIONS: Low energy ESWT combined with low tension traction provided a more stable intervertebral environment for the regeneration and repair of moderate and severe degenerative discs. Low energy ESWT promoted the regeneration of disc matrix by reducing MMP-3, MMP-13, and ADAMTS-4 resulting in inhibition of collagen degradation. Although axial traction promoted the recovery of height and rehydration of the IVD, combined with low energy ESWT, the micro-nano structure of the bony endplate underwent positive reconstruction, tension in the annulus of the AF and nuclear stress of the NP declined, and the biomechanical microenvironment required for IVD regeneration and repair was reshaped.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/terapia , Masculino , Ratos , Ratos Sprague-Dawley , Tração
19.
Environ Pollut ; 266(Pt 2): 115189, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683164

RESUMO

Environmental colloids play crucial roles in the transport of environmental pollutants in porous media by acting as pollutant carriers. In this work, the dispersion stability and correlated transport of kaolinite colloid were investigated as a function of solution pH, solution ionic strength, and concentration of humic acid (HA), the roles of kaolinite colloid in driving Eu(III) transport were discussed. The results showed that the dispersion of kaolinite colloid was favorable at alkaline and extremely acidic pH values, the trend of aggregation with varying pH was critically reversed at pH ∼3.2 due to the transformation of surface electrical properties. Cations with higher valence and mineral affinity showed a more significant contribution in inducing colloid aggregation, which was generally in accordance with the Schulze-Hardy rule and Hofmeister series. HA greatly increased the colloid stability by altering the surface electrostatic potential and steric effect. The Derjguin-Landau-Verwey-Overbeek (DLVO) model suggested that the electrostatic force between colloidal particles controlled the aggregation and destabilizing trend of colloid, and the theoretically calculated critical coagulation concentration was consistent with that determined from kinetic aggregation experiments. The roles of kaolinite colloid in driving Eu(III) transport varied under different conditions, and the transport behavior was highly correlated with the dispersion stability trend of colloid. These results can provide an enhanced understanding of the environmental fate of kaolinite colloid as well as commensal pollutants.


Assuntos
Substâncias Húmicas/análise , Caulim , Coloides , Eletrólitos , Concentração de Íons de Hidrogênio
20.
Spine J ; 20(9): 1503-1516, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32305426

RESUMO

BACKGROUND: By blocking the cascade of reactions leading to intervertebral disc degeneration through immobilization-traction, a delay in intervertebral disc degeneration and its regeneration, to some extent, has been observed. However, the precise balance of regulation of the microenvironment of intervertebral disc biomechanics and coordination of the complex spatiotemporal reconstruction of the extracellular matrix have not yet been solved, and clinical results are far from successful. PURPOSE: In the present study, a mechanical degeneration model was constructed to evaluate the possibility and effectiveness of disc regeneration or repair through low-tension traction of degenerated discs so as to provide basic biomechanical information for clinical optimization of the traction device and to establish traction parameters for prevention and treatment of disc degeneration. STUDY DESIGN: A macro-, micro-, and nano-level structural analysis of degenerative discs of rat tail before and after controlled traction. METHODS: Six-month-old male Sprague-Dawley rats were randomly divided into seven groups: Group A: control group (instrumented with Kirschner [K]-wires only); Group B: Model group (caudal vertebrae immobilized using a custom-made external device to fix four caudal vertebrae [Co7-Co10], while Co8-Co9 vertebrae underwent 4 weeks of compression to induce disc degeneration); Group C: experimental control group (devices removed after the 4 week compression described in Group B, and recovered by themselves for 4 weeks). The remaining four groups represented intervention groups (Groups D and F: Co8-Co9 vertebrae compressed for 4 weeks followed by 2 or 4 weeks of in situ traction, respectively; Groups E and G: vertebrae compressed for 4 weeks followed by 2 or 4 weeks of excessive traction, respectively). X-ray and magnetic resonance imaging were performed at each time point to measure disc height and T2 signal intensity. At the end of the experiment, the animals were euthanized and tail vertebrae harvested for analysis of intervertebral disc histopathology, proteoglycan content, elastic modulus of fibers of the annulus fibrosus (AF) and nucleus pulposus (NP), and microstructure of the bony end plate. RESULTS: After 2 to 4 weeks of continuous traction (in situ and excessive traction), the Co8-Co9 intervertebral disc space of rats in Groups D to G increased significantly compared with Groups B and C (p < .05). In addition, signs of tissue regeneration were apparent in all four intervention groups (D-G). In addition, histologic scores of the intervention groups (D-G) were significantly lower than those in the model and experimental control groups (Groups B and C, respectively), although no significant difference was found between those four groups. Compared with the model group (Group B), total proteoglycan content of the NP in the intervention groups (D-G) increased significantly (p < .05). After 2 to 4 weeks of intervention (in situ and excessive traction), the morphology of pores in the bony end plate, their number, and the diameter had recovered significantly compared with those in Group B. The in situ traction group was superior to the excessive traction group, and 4 weeks in situ group significantly superior to the 2 weeks group. In all intervention groups, in both the inner and outer AF, mean fibril diameter decreased significantly (p < .05), although they remained larger in the excessive traction group than that in the in situ traction group. Consistent with trend in collagen fiber diameter, the outer AF was stiffer than the inner, and the modulus of the AF in each intervention group not significantly different from that of the control group (Group A) except Group C. However, within the NP, the variation in trend in diameter and modulus of collagen fibers was essentially inconsistent with that of the AF. CONCLUSIONS: Degenerated discs exhibit greater reconstruction after low tension traction. It is clear that the intervertebral disc mechanical microenvironment depends to a greater extent on low-tension traction than high-tension traction.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/terapia , Masculino , Ratos , Ratos Sprague-Dawley , Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA