Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pain ; 16: 1744806920966144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108956

RESUMO

Lots of studies have demonstrated that anterior cingulate cortex plays important roles in the pain perception and pain modulation. The present study explored the role of mu-opioid receptor in nociceptive modulation in anterior cingulate cortex of rats with neuropathic pain. Neuropathic pain model was set up by chronic constriction injury of the left sciatic nerve of rats. The hindpaw withdrawal latency to thermal and mechanical stimulation, by hot plate and Randall Selitto Test respectively, was used to evaluate the rat's responses to noxious stimulation. Results showed that intra-anterior cingulate cortex injection of morphine could induce the antinociception dose-dependently. By intra-anterior cingulate cortex injection of opioid receptor antagonist, the morphine-induced antinociception could be attenuated by naloxone, as well as much significantly by the selective mu-opioid receptor antagonist ß-funaltrexamine, indicating that mu-opioid receptor is involved in the morphine-induced antinociception in anterior cingulate cortex of rats with neuropathic pain. The morphine-induced antinociception was much more decreased in rats with neuropathic pain than that in normal rats, and there was a significant decrease in mu-opioid receptor messenger RNA levels in anterior cingulate cortex of rats with neuropathic pain, indicating that there may be a down-regulation in mu-opioid receptor expression in anterior cingulate cortex of rats with neuropathic pain. To further confirm the role of mu-opioid receptor in morphine-induced antinociception in anterior cingulate cortex, normal rats were received intra-anterior cingulate cortex administration of small interfering RNA targeting mu-opioid receptor and it was found that there was a down-regulation in mu-opioid receptor messenger RNA levels, as well as a down-regulation in mu-opioid receptor expression in anterior cingulate cortex tested by real-time polymerase chain reaction and western blotting. Furthermore, the morphine-induced antinociceptive effect decreased significantly in rats with small interfering RNA targeting mu-opioid receptor, which indicated that knockdown mu-opioid receptor in anterior cingulate cortex could also attenuate morphine-induced antinociceptive effect. These results strongly suggest that mu-opioid receptor plays a significant role in nociceptive modulation in anterior cingulate cortex of rats.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Neuralgia/metabolismo , Nociceptividade , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Animais , Escala de Avaliação Comportamental , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Masculino , Morfina/farmacologia , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores Opioides mu/genética , Nervo Isquiático/lesões
2.
Front Pharmacol ; 11: 928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670060

RESUMO

It is known that calcitonin gene-related peptide (CGRP) plays a key role in pain modulation in the brain. There are high expressions of CGRP and CGRP receptor in anterior cingulate cortex (ACC), an important brain structure in pain modulation. The present study explored the role and mechanisms of CGRP and CGRP receptor in nociceptive modulation in ACC in naïve rats and inflammatory rats. Administration of different does of CGRP in ACC induced significant antinociception in a dose-dependent manner in both naïve rats and rats with inflammatory pain. The CGRP-induced antinociception was attenuated by injection of the CGRP receptor antagonist CGRP8-37 in ACC. Interestingly, both CGRP-induced antinociception and CGRP receptor expression decreased in ACC in rats with inflammatory pain compared with naïve rats. Knockdown of CGRP receptor in ACC by siRNA targeting to CGRP receptor attenuated both the CGRP receptor expression and the CGRP-induced antinociception significantly in rats. These findings demonstrate that CGRP and CGRP receptor participate in nociceptive modulation in ACC in rats, inhibiting CGRP receptor expression induces decrease in CGRP-induced antinociception in ACC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA