Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(4): 1070-1085.e12, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031744

RESUMO

The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.


Assuntos
Lesão Pulmonar Aguda/patologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Animais , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Quimiocinas/sangue , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pulmão/fisiologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/patologia , SARS-CoV-2 , Índice de Gravidade de Doença , Taxa de Sobrevida
2.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931734

RESUMO

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Assuntos
Infecções por Coronavirus/imunologia , Imunogenicidade da Vacina , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Pneumonia Viral/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Vacinas Virais/administração & dosagem
3.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526206

RESUMO

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Sistema Respiratório/virologia , Genética Reversa/métodos , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Fibrose Cística/patologia , DNA Recombinante , Feminino , Furina/metabolismo , Humanos , Imunização Passiva , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Sistema Respiratório/patologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Células Vero , Virulência , Replicação Viral , Soroterapia para COVID-19
4.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33290746

RESUMO

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Genoma Viral , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Animais , Antivirais/farmacologia , COVID-19/genética , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/genética , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Nucleocapsídeo/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , SARS-CoV-2/genética , Células Vero , Tratamento Farmacológico da COVID-19
5.
Nature ; 586(7830): 560-566, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32854108

RESUMO

Coronaviruses are prone to transmission to new host species, as recently demonstrated by the spread to humans of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are needed urgently for rapid evaluation of medical countermeasures2,3. SARS-CoV-2 cannot infect wild-type laboratory mice owing to inefficient interactions between the viral spike protein and the mouse orthologue of the human receptor, angiotensin-converting enzyme 2 (ACE2)4. Here we used reverse genetics5 to remodel the interaction between SARS-CoV-2 spike protein and mouse ACE2 and designed mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA), a recombinant virus that can use mouse ACE2 for entry into cells. SARS-CoV-2 MA was able to replicate in the upper and lower airways of both young adult and aged BALB/c mice. SARS-CoV-2 MA caused more severe disease in aged mice, and exhibited more clinically relevant phenotypes than those seen in Hfh4-ACE2 transgenic mice, which express human ACE2 under the control of the Hfh4 (also known as Foxj1) promoter. We demonstrate the utility of this model using vaccine-challenge studies in immune-competent mice with native expression of mouse ACE2. Finally, we show that the clinical candidate interferon-λ1a (IFN-λ1a) potently inhibits SARS-CoV-2 replication in primary human airway epithelial cells in vitro-both prophylactic and therapeutic administration of IFN-λ1a diminished SARS-CoV-2 replication in mice. In summary, the mouse-adapted SARS-CoV-2 MA model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN-λ1a as a treatment for human COVID-196.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Interferons/farmacologia , Interferons/uso terapêutico , Interleucinas/farmacologia , Interleucinas/uso terapêutico , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Envelhecimento/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Interferon-alfa/administração & dosagem , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Interferons/administração & dosagem , Interleucinas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2
6.
J Virol ; 98(4): e0160323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38526054

RESUMO

mRNA-1647 is an investigational mRNA-based vaccine against cytomegalovirus (CMV) that contains sequences encoding the CMV proteins glycoprotein B and pentamer. Humoral and cellular immune responses were evaluated in blood samples collected from healthy CMV-seropositive and CMV-seronegative adults who participated in a phase 1 trial of a three-dose series of mRNA-1647 (NCT03382405). Neutralizing antibody (nAb) titers against fibroblast and epithelial cell infection in sera from CMV-seronegative mRNA-1647 recipients were higher than those in sera from control CMV-seropositive samples and remained elevated up to 12 months after dose 3. nAb responses elicited by mRNA-1647 were comparable across 14 human CMV (HCMV) strains. Frequencies of antigen-specific memory B cells increased in CMV-seropositive and CMV-seronegative participants after each mRNA-1647 dose and remained elevated for up to 6 months after dose 3. mRNA-1647 elicited robust increases in frequencies and polyfunctionality of CD4+ T helper type 1 and effector CD8+ T cells in samples from CMV-seronegative and CMV-seropositive participants after stimulation with HCMV-specific peptides. The administration of three doses of mRNA-1647 to healthy adults elicited high nAb titers with wide-breadth, long-lasting memory B cells, and strong polyfunctional T-cell responses. These findings support further clinical development of the mRNA-1647 vaccine against CMV.IMPORTANCECytomegalovirus (CMV), a common virus that can infect people of all ages, may lead to serious health problems in unborn babies and those with a weakened immune system. Currently, there is no approved vaccine available to prevent CMV infection; however, the investigational messenger RNA (mRNA)-based CMV vaccine, mRNA-1647, is undergoing evaluation in clinical trials. The current analysis examined samples from a phase 1 trial of mRNA-1647 in healthy adults to better understand how the immune system reacts to vaccination. Three doses of mRNA-1647 produced a long-lasting immune response, thus supporting further investigation of the vaccine in the prevention of CMV infection.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT03382405).


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Adulto , Humanos , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , RNA Mensageiro/genética
7.
Proc Natl Acad Sci U S A ; 119(18): e2118126119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476513

RESUMO

Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Alphacoronavirus/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções por Coronavirus/epidemiologia , Suínos
8.
Biochem Biophys Res Commun ; 691: 149243, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38016338

RESUMO

Cancer stem cells (CSCs), as parts of tumor initiation cells, play a crucial role to tumorigenesis, development and recurrence. However, the complicated mechanisms of CSCs to adapt to tumor microenvironment and its stemness maintenance remains unclear. Here, we show that oxidized ATM, a hypoxia-activated cytoplasm ATM, acts a novel function to maintain CSC stemness in triple-negative breast cancer cells (BCSCs) via regulating histone H4 acetylation. Mechanistically, oxidized ATM phosphorylates TRIM21 (a E3 ubiquitin ligase) serine 80 and serine 469. Serine 80 phosphorylation of TRIM21 is essential for the ubiquitination activity of TRIM21. TRIM21 binds with SIRT1 (one of deacetylase), resulting in ubiquitylation-mediated degradation of SIRT1. The reduced SIRT1 leads to increase of histone H4 acetylation, thus facilitating CSC-related gene expression. Clinical data verify that high level of ATM in breast tumors is positively correlated with malignant grade, and is closely related with low SIRT1, high p-TRIM21, and high CD44 expression. In conclusion, our study provides a novel mechanism by which oxidized ATM governing BCSCs stemness and reveals an important link among oxidized ATM, histone acetylation, and BCSCs maintenance.


Assuntos
Neoplasias da Mama , Sirtuína 1 , Humanos , Feminino , Sirtuína 1/metabolismo , Acetilação , Neoplasias da Mama/patologia , Histonas/metabolismo , Ubiquitinação , Células-Tronco Neoplásicas/patologia , Serina/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
9.
J Virol ; 97(12): e0119323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971221

RESUMO

IMPORTANCE: Coronaviruses are important pathogens of humans and animals, and vaccine developments against them are imperative. Due to the ability to induce broad and prolonged protective immunity and the convenient administration routes, live attenuated vaccines (LAVs) are promising arms for controlling the deadly coronavirus infections. However, potential recombination events between vaccine and field strains raise a safety concern for LAVs. The porcine epidemic diarrhea virus (PEDV) remodeled TRS (RMT) mutant generated in this study replicated efficiently in both cell culture and in pigs and retained protective immunogenicity against PEDV challenge in pigs. Furthermore, the RMT PEDV was resistant to recombination and genetically stable. Therefore, RMT PEDV can be further optimized as a backbone for the development of safe LAVs.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Recombinação Genética , Doenças dos Suínos , Suínos , Vacinas Atenuadas , Vacinas Virais , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/crescimento & desenvolvimento , Vírus da Diarreia Epidêmica Suína/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral , Células Cultivadas , Mutação
10.
PLoS Comput Biol ; 19(8): e1011331, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585381

RESUMO

Cefquinome is widely used to treat respiratory tract diseases of swine. While extra-label dosages of cefquinome could improve clinical efficacy, they might lead to excessively high residues in animal-derived food. In this study, a physiologically based pharmacokinetic (PBPK) model was calibrated based on the published data and a microdialysis experiment to assess the dosage efficiency and food safety. For the microdialysis experiment, in vitro/in vivo relative recovery and concentration-time curves of cefquinome in the lung interstitium were investigated. This PBPK model is available to predict the drug concentrations in the muscle, kidney, liver, plasma, and lung interstitial fluid. Concentration-time curves of 1000 virtual animals in different tissues were simulated by applying sensitivity and Monte Carlo analyses. By integrating pharmacokinetic/pharmacodynamic target parameters, cefquinome delivered at 3-5 mg/kg twice daily is advised for the effective control of respiratory tract infections of nursery pig, which the bodyweight is around 25 kg. Based on the predicted cefquinome concentrations in edible tissues, the withdrawal interval is 2 and 3 days for label and the extra-label doses, respectively. This study provides a useful tool to optimize the dosage regimen of cefquinome against respiratory tract infections and predicts the concentration of cefquinome residues in edible tissues. This information would be helpful to improve the food safety and guide rational drug usage.


Assuntos
Cefalosporinas , Infecções Respiratórias , Animais , Suínos , Cefalosporinas/farmacocinética , Fígado , Rim , Antibacterianos/farmacologia
11.
J Proteome Res ; 22(10): 3159-3177, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37634194

RESUMO

Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.


Assuntos
COVID-19 , Hepatite C Crônica , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Antivirais/farmacologia , Inibidores de MTOR , Fosfatidilinositol 3-Quinases , SARS-CoV-2 , Replicação Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Serina-Treonina Quinases TOR
12.
Proc Natl Acad Sci U S A ; 117(43): 26915-26925, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046644

RESUMO

Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.


Assuntos
Alphacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Suscetibilidade a Doenças/virologia , Replicação Viral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alphacoronavirus/genética , Alphacoronavirus/crescimento & desenvolvimento , Animais , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/transmissão , Expressão Gênica , Especificidade de Hospedeiro , Humanos , Proteínas Luminescentes/genética , Camundongos , Células Vero , Replicação Viral/efeitos dos fármacos
13.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33472939

RESUMO

Respiratory virus challenge studies involve administration of the challenge virus and sampling to assess for protection from the same anatomical locations. It can therefore be difficult to differentiate actively replicating virus from input challenge virus. For SARS-CoV-2, specific monitoring of actively replicating virus is critical to investigate the protective and therapeutic efficacy of vaccines, monoclonal antibodies, and antiviral drugs. We developed a SARS-CoV-2 subgenomic RNA (sgRNA) RT-PCR assay to differentiate productive infection from inactivated or neutralized virus. Subgenomic RNAs are generated after cell entry and are poorly incorporate into mature virions, and thus may provide a marker for actively replicating virus. We show envelope (E) sgRNA was degraded by RNase in infected cell lysates, while genomic RNA (gRNA) was protected, presumably due to packaging into virions. To investigate the capacity of the sgRNA assay to distinguish input challenge virus from actively replicating virus in vivo, we compared the E sgRNA assay to a standard nucleoprotein (N) or E total RNA assay in convalescent rhesus macaques and in antibody-treated rhesus macaques after experimental SARS-CoV-2 challenge. In both studies, the E sgRNA assay was negative, suggesting protective efficacy, whereas the N and E total RNA assays remained positive. These data suggest the potential utility of sgRNA to monitor actively replicating virus in prophylactic and therapeutic SARS-CoV-2 studies.ImportanceDeveloping therapeutic and prophylactic countermeasures for the SARS-CoV-2 virus is a public health priority. During challenge studies, respiratory viruses are delivered and sampled from the same anatomical location. It is therefore important to distinguish actively replicating virus from input challenge virus. The most common assay for detecting SARS-CoV-2 virus, reverse transcription polymerase chain reaction (RT-PCR) targeting nucleocapsid total RNA, cannot distinguish neutralized input virus from replicating virus. In this study, we assess SARS-CoV-2 subgenomic RNA as a potential measure of replicating virus in rhesus macaques.

15.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062501

RESUMO

Target tracking is a critical technique for localization in an indoor environment. Current target-tracking methods suffer from high overhead, high latency, and blind spots issues due to a large amount of data needing to be collected or trained. On the other hand, a lightweight tracking method is preferred in many cases instead of just pursuing accuracy. For this reason, in this paper, we propose a Wi-Fi-enabled Infrared-like Device-free (WIDE) method for target tracking to realize a lightweight target-tracking method. We first analyze the impact of target movement on the physical layer of the wireless link and establish a near real-time model between the Channel State Information (CSI) and human motion. Secondly, we make full use of the network structure formed by a large number of wireless devices already deployed in reality to achieve the goal. We validate the WIDE method in different environments. Extensive evaluation results show that the WIDE method is lightweight and can track targets rapidly as well as achieve satisfactory tracking results.


Assuntos
Movimento , Humanos , Movimento (Física)
16.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409082

RESUMO

Model informed drug development is a valuable tool for drug development and clinical application due to its ability to integrate variability and uncertainty of data. This study aimed to determine an optimal dosage of ceftiofur against P. multocida by ex vivo pharmacokinetic/pharmacodynamic (PK/PD) model and validate the dosage regimens by Physiological based Pharmacokinetic-Pharmacodynamic (PBPK/PD) model. The pharmacokinetic profiles of ceftiofur both in plasma and bronchoalveolar lavage fluid (BALF) are determined. PD performance of ceftiofur against P. multocida was investigated. By establishing PK/PD model, PK/PD parameters and doses were determined. PBPK model and PBPK/PD model were developed to validate the dosage efficacy. The PK/PD parameters, AUC0-24 h/MIC, for bacteriostatic action, bactericidal action and elimination were determined as 44.02, 89.40, and 119.90 h and the corresponding dosages were determined as 0.22, 0.46, and 0.64 mg/kg, respectively. AUC24 h/MIC and AUC 72 h/MIC are simulated by PBPK model, compared with the PK/PD parameters, the therapeutic effect can reach probability of target attainment (PTA) of 90%. The time-courses of bacterial growth were predicted by the PBPK/PD model, which indicated the dosage of 0.46 mg/kg body weight could inhibit the bacterial growth and perform good bactericidal effect.


Assuntos
Pasteurella multocida , Animais , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Testes de Sensibilidade Microbiana , Suínos
17.
J Clin Microbiol ; 59(10): e0052721, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34288726

RESUMO

Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Chlorocebus aethiops , Células HEK293 , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
18.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30404797

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets. The PEDV spike (S) protein contains two intracellular sorting motifs, YxxΦ (tyrosine-based motif YEVF or YEAF) and KVHVQ at the cytoplasmic tail, yet their functions have not been fully elucidated. Some Vero cell-adapted and/or attenuated PEDV variants contain ablations in these two motifs. We hypothesized that these motifs contribute to viral pathogenicity. By transiently expressing PEDV S proteins with mutations in the motifs, we confirmed that the motif KVHVQ is involved in retention of the S proteins in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). In addition, we showed that the YxxΦ motif triggers endocytosis of S proteins. These two motifs synergistically regulate the level of S expressed on the cell surface. To investigate their role in viral pathogenicity, we generated three recombinant PEDVs by introducing deletions or a mutation in the two motifs of the infectious clone of PEDV PC22A strain (icPC22A): (i) icΔ10aa (ΔYxxΦEKVHVQ), (ii) icΔ5aa (ΔKVHVQ), and (iii) icYA (Y1378A, to an inactivated motif, AEVF). Infection of Vero cells with icΔ10aa resulted in larger syncytia and more virions, with reduced numbers of S protein projections on the surface compared with icPC22A. Furthermore, we orally inoculated five groups of 5-day-old gnotobiotic piglets with the three mutants, icPC22A, or a mock treatment. Mutant icΔ10aa caused less severe diarrhea rate and significantly milder intestinal lesions than icPC22A, icΔ5aa, and icYA. These data suggest that the deletion of both motifs can reduce the virulence of PEDV in piglets.IMPORTANCE Many coronaviruses (CoVs) possess conserved motifs YxxΦ and/or KxHxx/KKxx in the cytoplasmic tail of the S protein. The KxHxx/KKxx motif has been identified as the ER retrieval signal, but the function of the YxxΦ motif in the intracellular sorting of CoV S proteins remains controversial. In this study, we showed that the YxxΦ of PEDV S protein is an endocytosis signal. Furthermore, using reverse genetics technology, we evaluated its role in PEDV pathogenicity in neonatal piglets. Our results explain one attenuation mechanism of Vero cell-adapted PEDV variants lacking functional YxxΦ and KVHVQ motifs. Knowledge from this study may aid in the design of efficacious live attenuated vaccines against PEDV, as well as other CoVs bearing the same motif in their S protein.


Assuntos
Vírus da Diarreia Epidêmica Suína/patogenicidade , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Doenças dos Suínos/virologia , Motivos de Aminoácidos , Animais , Chlorocebus aethiops , Endocitose , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Células Vero , Virulência
19.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118255

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate.IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Análise de Sobrevida , Suínos , Doenças dos Suínos/patologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
Methods ; 140-141: 40-51, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448037

RESUMO

Fluorescence cross-correlation spectroscopy (FCCS) is an advanced fluorescence technique that can quantify protein-protein interactions in vivo. Due to the dynamic, heterogeneous nature of the membrane, special considerations must be made to interpret FCCS data accurately. In this study, we describe a method to quantify the oligomerization of membrane proteins tagged with two commonly used fluorescent probes, mCherry (mCH) and enhanced green (eGFP) fluorescent proteins. A mathematical model is described that relates the relative cross-correlation value (fc) to the degree of oligomerization. This treatment accounts for mismatch in the confocal volumes, combinatoric effects of using two fluorescent probes, and the presence of non-fluorescent probes. Using this model, we calculate a ladder of fc values which can be used to determine the oligomer state of membrane proteins from live-cell experimental data. Additionally, a probabilistic mathematical simulation is described to resolve the affinity of different dimeric and oligomeric protein controls.


Assuntos
Proteínas de Membrana/metabolismo , Modelos Químicos , Multimerização Proteica , Espectrometria de Fluorescência/métodos , Animais , Células COS , Chlorocebus aethiops , Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Modelos Estatísticos , Ligação Proteica , Espectrometria de Fluorescência/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA