Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732249

RESUMO

Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-ß2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-ß2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-ß2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-ß2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-ß2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-ß2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.


Assuntos
Condrócitos , Biossíntese de Proteínas , RNA Ribossômico , Ribossomos , Fator de Crescimento Transformador beta2 , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Ribossomos/metabolismo , Humanos , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Sítios Internos de Entrada Ribossomal , Linhagem Celular
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628759

RESUMO

Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated SNORA22 and SNORA33 KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by 35S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of SNORA33, but not SNORA22, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Proteoma/genética , Ribossomos/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética
3.
Tissue Eng Part A ; 28(1-2): 27-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039008

RESUMO

Osteoarthritis (OA) is characterized by progressive articular cartilage loss. Human mesenchymal stromal cells (MSCs) can be used for cartilage repair therapies based on their potential to differentiate into chondrocytes. However, the joint microenvironment is a major determinant of the success of MSC-based cartilage formation. Currently, there is no tool that is able to predict the effect of a patient's OA joint microenvironment on MSC-based cartilage formation. Our goal was to develop a molecular tool that can predict this effect before the start of cartilage repair therapies. Six different promoter reporters (hIL6, hIL8, hADAMTS5, hWISP1, hMMP13, and hADAM28) were generated and evaluated in an immortalized human articular chondrocyte for their responsiveness to an osteoarthritic microenvironment by stimulation with OA synovium-conditioned medium (OAs-cm) obtained from 32 different knee OA patients. To study the effect of this OA microenvironment on MSC-based cartilage formation, MSCs were cultured in a three-dimensional pellet culture model, while stimulated with OAs-cm. Cartilage formation was assessed histologically and by quantifying sulfated glycosaminoglycan (sGAG) production. We confirmed that OAs-cm of different patients had significantly different effects on sGAG production. In addition, significant correlations were obtained between the effect of the OAs-cm on cartilage formation and promoter reporter outcome. Furthermore, we validated the predictive value of measuring two promoter reporters with an independent cohort of OAs-cm and the effect of 87.5% of the OAs-cm on MSC-based cartilage formation could be predicted. Together, we developed a novel tool to predict the effect of the OA joint microenvironment on MSC-based cartilage formation. This is an important first step toward personalized cartilage repair strategies for OA patients. Impact statement We describe the development of a novel molecular tool to predict if an osteoarthritis joint microenvironment is permissive for cartilage repair or not. Such a tool is of great importance in determining the success of mesenchymal stromal cell-based cartilage repair strategies.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Cartilagem Articular/patologia , Condrócitos/patologia , Condrogênese/fisiologia , Humanos , Osteoartrite do Joelho/patologia
4.
Sci Rep ; 10(1): 13426, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778764

RESUMO

Although pathways controlling ribosome activity have been described to regulate chondrocyte homeostasis in osteoarthritis, ribosome biogenesis in osteoarthritis is unexplored. We hypothesized that U3 snoRNA, a non-coding RNA involved in ribosomal RNA maturation, is critical for chondrocyte protein translation capacity in osteoarthritis. U3 snoRNA was one of a number of snoRNAs with decreased expression in osteoarthritic cartilage and osteoarthritic chondrocytes. OA synovial fluid impacted U3 snoRNA expression by affecting U3 snoRNA gene promoter activity, while BMP7 was able to increase its expression. Altering U3 snoRNA expression resulted in changes in chondrocyte phenotype. Interference with U3 snoRNA expression led to reduction of rRNA levels and translational capacity, whilst induced expression of U3 snoRNA was accompanied by increased 18S and 28S rRNA levels and elevated protein translation. Whole proteome analysis revealed a global impact of reduced U3 snoRNA expression on protein translational processes and inflammatory pathways. For the first time we demonstrate implications of a snoRNA in osteoarthritis chondrocyte biology and investigated its role in the chondrocyte differentiation status, rRNA levels and protein translational capacity.


Assuntos
Condrócitos/metabolismo , Osteoartrite/metabolismo , RNA Nucleolar Pequeno/genética , Adulto , Idoso , Animais , Sequência de Bases , Nucléolo Celular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Osteoartrite/genética , Cultura Primária de Células , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/genética , RNA Nucleolar Pequeno/metabolismo
5.
Chem Biol Interact ; 239: 146-52, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26163455

RESUMO

The antioxidant flavonoid 7-mono-O-(ß-hydroxyethyl)-rutoside (monoHER) effectively protects against doxorubicin-induced cardiotoxicity in mice. Doxorubicin is a very effective anticancer drug. The clinical use of doxorubicin is limited by severe cardiotoxicity. Free radicals, i.e., hydroxyl and superoxide radicals play a crucial role in this toxicity. In this study the involvement of the major metabolite of monoHER, 4'-O-methylmonoHER (methylmonoHER) in the protective effect of monoHER is studied. MethylmonoHER displayed antioxidant activity i.e., TEAC, hydroxyl and superoxide radical scavenging activity; nevertheless monoHER appeared to be superior compared to methylmonoHER. As a result of scavenging, flavonoids are oxidized and display reactivity towards thiols. Oxidized methylmonoHER, is far less thiol reactive towards creatine kinase than monoHER, which indicates that methylmonoHER is less toxic towards thiol containing enzymes. The thiol-reactivity of oxidized methylmonoHER was also negligible towards KEAP1 compared to monoHER. These results indicate that methylmonoHER hardly protects against radical damage via scavenging or via activating the NRF2 defense system. Also in HUVECs, methylmonoHER provided far less protection against oxidative stress (EC50>100µM) than monoHER which was a very potent protector (EC50=80nM). The results indicate that the contribution of methylmonoHER to the protection against doxorubicin-induced cardiotoxicity by monoHER is relatively low.


Assuntos
Antioxidantes/farmacologia , Hidroxietilrutosídeo/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Rutina/análogos & derivados , Antioxidantes/metabolismo , Creatina Quinase/metabolismo , Doxorrubicina/efeitos adversos , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hidroxietilrutosídeo/metabolismo , Hidroxietilrutosídeo/farmacologia , Radical Hidroxila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Rutina/química , Rutina/farmacologia , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA