Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Biol Sci ; 290(2005): 20231022, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37583319

RESUMO

When a plant is introduced to a new ecosystem it may escape from some of its coevolved herbivores. Reduced herbivore damage, and the ability of introduced plants to allocate resources from defence to growth and reproduction can increase the success of introduced species. This mechanism is known as enemy release and is known to occur in some species and situations, but not in others. Understanding the conditions under which enemy release is most likely to occur is important, as this will help us to identify which species and habitats may be most at risk of invasion. We compared in situ measurements of herbivory on 16 plant species at 12 locations within their native European and introduced Australian ranges to quantify their level of enemy release and understand the relationship between enemy release and time, space and climate. Overall, plants experienced approximately seven times more herbivore damage in their native range than in their introduced range. We found no evidence that enemy release was related to time since introduction, introduced range size, temperature, precipitation, humidity or elevation. From here, we can explore whether traits, such as leaf defences or phylogenetic relatedness to neighbouring plants, are stronger indicators of enemy release across species.


Assuntos
Ecossistema , Plantas , Filogenia , Austrália , Herbivoria , Espécies Introduzidas
2.
New Phytol ; 233(5): 2058-2070, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850394

RESUMO

Vulnerability to xylem cavitation is a strong predictor of drought-induced damage in forest communities. However, biotic features of the community itself can influence water availability at the individual tree-level, thereby modifying patterns of drought damage. Using an experimental forest in Tasmania, Australia, we determined the vulnerability to cavitation (leaf P50 ) of four tree species and assessed the drought-induced canopy damage of 2944 6-yr-old trees after an extreme natural drought episode. We examined how individual damage was related to their size and the density and species identity of neighbouring trees. The two co-occurring dominant tree species, Eucalyptus delegatensis and Eucalyptus regnans, were the most vulnerable to drought-induced xylem cavitation and both species suffered significantly greater damage than neighbouring, subdominant species Pomaderris apetala and Acacia dealbata. While the two eucalypts had similar leaf P50 values, E. delegatensis suffered significantly greater damage, which was strongly related to the density of neighbouring P. apetala. Damage in E. regnans was less impacted by neighbouring plants and smaller trees of both eucalypts sustained significantly more damage than larger trees. Our findings demonstrate that natural drought damage is influenced by individual plant physiology as well as the composition, physiology and density of the surrounding stand.


Assuntos
Secas , Eucalyptus , Eucalyptus/fisiologia , Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Água , Xilema/fisiologia
3.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427510

RESUMO

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Assuntos
Biodiversidade , Ecossistema , Plantas , Teorema de Bayes , Mudança Climática , Atividades Humanas , Humanos
4.
New Phytol ; 229(3): 1375-1387, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32638379

RESUMO

Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations. We measured within-species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co-occurring Acacia species to explore how traits and their variances change with aridity. Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation. Our results highlight that climate can drive consistent within-species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients.


Assuntos
Ecossistema , Árvores , Austrália , Fenótipo , Folhas de Planta
5.
Nature ; 511(7511): 583-6, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-24870242

RESUMO

The rising atmospheric concentration of carbon dioxide (CO2) should stimulate ecosystem productivity, but to what extent is highly uncertain, particularly when combined with changing temperature and precipitation. Ecosystem response to CO2 is complicated by biogeochemical feedbacks but must be understood if carbon storage and associated dampening of climate warming are to be predicted. Feedbacks through the hydrological cycle are particularly important and the physiology is well known; elevated CO2 reduces stomatal conductance and increases plant water use efficiency (the amount of water required to produce a unit of plant dry matter). The CO2 response should consequently be strongest when water is limiting; although this has been shown in some experiments, it is absent from many. Here we show that large annual variation in the stimulation of above-ground biomass by elevated CO2 in a mixed C3/C4 temperate grassland can be predicted accurately using seasonal rainfall totals; summer rainfall had a positive effect but autumn and spring rainfall had negative effects on the CO2 response. Thus, the elevated CO2 effect mainly depended upon the balance between summer and autumn/spring rainfall. This is partly because high rainfall during cool, moist seasons leads to nitrogen limitation, reducing or even preventing biomass stimulation by elevated CO2. Importantly, the prediction held whether plots were warmed by 2 °C or left unwarmed, and was similar for C3 plants and total biomass, allowing us to make a powerful generalization about ecosystem responses to elevated CO2. This new insight is particularly valuable because climate projections predict large changes in the timing of rainfall, even where annual totals remain static. Our findings will help resolve apparent differences in the outcomes of CO2 experiments and improve the formulation and interpretation of models that are insensitive to differences in the seasonal effects of rainfall on the CO2 response.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Poaceae/metabolismo , Chuva , Estações do Ano , Modelos Teóricos , Água/metabolismo , Ciclo Hidrológico
6.
Ecol Lett ; 22(3): 458-468, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30609167

RESUMO

Elevated CO2 is widely accepted to enhance terrestrial carbon sink, especially in arid and semi-arid regions. However, great uncertainties exist for the CO2 fertilisation effects, particularly when its interactions with other global change factors are considered. A four-factor (CO2 , temperature, precipitation and nitrogen) experiment revealed that elevated CO2 did not affect either gross ecosystem productivity or ecosystem respiration, and consequently resulted in no changes of net ecosystem productivity in a semi-arid grassland despite whether temperature, precipitation and nitrogen were elevated or not. The observations could be primarily attributable to the offset of ecosystem carbon uptake by enhanced soil carbon release under CO2 enrichment. Our findings indicate that arid and semi-arid ecosystems may not be sensitive to CO2 enrichment as previously expected and highlight the urgent need to incorporate this mechanism into most IPCC carbon-cycle models for convincing projection of terrestrial carbon sink and its feedback to climate change.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Pradaria , Carbono , Ciclo do Carbono , Ecossistema
8.
Proc Natl Acad Sci U S A ; 113(45): 12757-12762, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791074

RESUMO

Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation and evapotranspiration (ET), ultimately driving changes in plant growth, hydrology, and the global carbon balance. Direct leaf biochemical effects have been widely investigated, whereas indirect effects, although documented, elude explicit quantification in experiments. Here, we used a mechanistic model to investigate the relative contributions of direct (through carbon assimilation) and indirect (via soil moisture savings due to stomatal closure, and changes in leaf area index) effects of elevated CO2 across a variety of ecosystems. We specifically determined which ecosystems and climatic conditions maximize the indirect effects of elevated CO2 The simulations suggest that the indirect effects of elevated CO2 on net primary productivity are large and variable, ranging from less than 10% to more than 100% of the size of direct effects. For ET, indirect effects were, on average, 65% of the size of direct effects. Indirect effects tended to be considerably larger in water-limited ecosystems. As a consequence, the total CO2 effect had a significant, inverse relationship with the wetness index and was directly related to vapor pressure deficit. These results have major implications for our understanding of the CO2 response of ecosystems and for global projections of CO2 fertilization, because, although direct effects are typically understood and easily reproducible in models, simulations of indirect effects are far more challenging and difficult to constrain. Our findings also provide an explanation for the discrepancies between experiments in the total CO2 effect on net primary productivity.

9.
Glob Chang Biol ; 24(12): 5668-5679, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30369019

RESUMO

The responses of species to environmental changes will determine future community composition and ecosystem function. Many syntheses of global change experiments examine the magnitude of treatment effect sizes, but we lack an understanding of how plant responses to treatments compare to ongoing changes in the unmanipulated (ambient or background) system. We used a database of long-term global change studies manipulating CO2 , nutrients, water, and temperature to answer three questions: (a) How do changes in plant species abundance in ambient plots relate to those in treated plots? (b) How does the magnitude of ambient change in species-level abundance over time relate to responsiveness to global change treatments? (c) Does the direction of species-level responses to global change treatments differ from the direction of ambient change? We estimated temporal trends in plant abundance for 791 plant species in ambient and treated plots across 16 long-term global change experiments yielding 2,116 experiment-species-treatment combinations. Surprisingly, for most species (57%) the magnitude of ambient change was greater than the magnitude of treatment effects. However, the direction of ambient change, whether a species was increasing or decreasing in abundance under ambient conditions, had no bearing on the direction of treatment effects. Although ambient communities are inherently dynamic, there is now widespread evidence that anthropogenic drivers are directionally altering plant communities in many ecosystems. Thus, global change treatment effects must be interpreted in the context of plant species trajectories that are likely driven by ongoing environmental changes.


Assuntos
Biodiversidade , Mudança Climática , Fenômenos Fisiológicos Vegetais , Dióxido de Carbono , Ecossistema , Temperatura , Água
10.
Ann Bot ; 119(7): 1225-1233, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334161

RESUMO

Background and aims: Global warming is expected to increase the mortality rate of established plants in water-limited systems because of its effect on evapotranspiration. The rising CO 2 concentration ([CO 2 ]), however, should have the opposite effect because it reduces plant transpiration, delaying the onset of drought. This potential for elevated [CO 2 ] (eCO 2 ) to modify the warming effect on mortality should be related to prevailing moisture conditions. This study aimed to determine the impacts of warming by 2 °C and eCO 2 (550 µmol mol -1 ) on plant mortality in an Australian temperate grassland over a 6-year period and to test how interannual variation in rainfall influenced treatment effects. Methods: Analyses were based on results from a field experiment, TasFACE, in which grassland plots were exposed to a combination of eCO 2 by free air CO 2 enrichment (FACE) and warming by infrared heaters. Using an annual census of established plants and detailed estimates of recruitment, annual mortality of all established plants was calculated. The influence of rainfall amount and timing on the relative impact of treatments on mortality in each year was analysed using multiple regression techniques. Key Results: Warming and eCO 2 effects had an interactive influence on mortality which varied strongly from year to year and this variation was determined by temporal rainfall patterns. Warming tended to increase density-adjusted mortality and eCO 2 moderated that effect, but to a greater extent in years with fewer dry periods. Conclusions: These results show that eCO 2 reduced the negative effect of warming but this influence varied strongly with rainfall timing. Importantly, indices involving the amount of rainfall were not required to explain interannual variation in mortality or treatment effects on mortality. Therefore, predictions of global warming effects on plant mortality will be reliant not only on other climate change factors, but also on the temporal distribution of rainfall.


Assuntos
Dióxido de Carbono/análise , Mudança Climática , Pradaria , Poaceae/fisiologia , Chuva , Austrália , Temperatura
11.
Ann Bot ; 119(6): 1043-1052, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073772

RESUMO

Background and aims: Drought leading to soil water deficit can have severe impacts on plants. Water deficit may lead to plant water stress and affect growth and chemical traits. Plant secondary metabolite (PSM) responses to water deficit vary between compounds and studies, with inconsistent reports of changes to PSM concentrations even within a single species. This disparity may result from experimental water deficit variation among studies, and so multiple water deficit treatments are used to fully assess PSM responses in a single species. Methods: Juvenile Eucalyptus globulus were grown for 8 weeks at one of ten water deficit levels based on evapotranspiration from control plants (100 %). Treatments ranged from 90 % of control evapotranspiration (mild water deficit) to 0 % of control evapotranspiration (severe water deficit) in 10 % steps. Plant biomass, foliar abscisic acid (ABA) levels, Ψ leaf , leaf C/N, selected terpenes and phenolics were quantified to assess responses to each level of water deficit relative to a control. Key Results: Withholding ≥30 % water resulted in higher foliar ABA levels and withholding ≥40 % water reduced leaf water content. Ψ leaf became more negative when ≥60 % water was withheld. Plant biomass was lower when ≥80 % water was withheld, and no water for 8 weeks (0 % water) resulted in plant death. The total oil concentration was lower and C/N was higher in dead and desiccated juvenile E. globulus leaves (0 % water). Concentrations of individual phenolic and terpene compounds, along with condensed tannin and total phenolic concentrations, remained stable regardless of water deficit or plant stress level. Conclusions: These juvenile E. globulus became stressed with a moderate reduction in available water, and yet the persistent concentrations of most PSMs in highly stressed or dead plants suggests no PSM re-metabolization and continued ecological roles of foliar PSMs during drought.


Assuntos
Secas , Eucalyptus/metabolismo , Água/metabolismo , Dessecação , Folhas de Planta/metabolismo , Transpiração Vegetal
12.
Glob Chang Biol ; 20(1): 158-69, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23828718

RESUMO

Our limited understanding of terrestrial ecosystem responses to elevated CO2 is a major constraint on predicting the impacts of climate change. A change in botanical composition has been identified as a key factor in the CO2 response with profound implications for ecosystem services such as plant production and soil carbon storage. In temperate grasslands, there is a strong consensus that elevated CO2 will result in a greater physiological stimulus to growth in legumes and to a lesser extent forbs, compared with C3 grasses, and the presumption this will lead in turn to a greater proportion of these functional groups in the plant community. However, this view is based on data mainly collected in experiments of three or less years in duration and not in experiments where defoliation has been by grazing animals. Grazing is, however, the most common management of grasslands and known in itself to influence botanical composition. In a long-term Free Air Carbon Dioxide Enrichment (FACE) experiment in a temperate grassland managed with grazing animals (sheep), we found the response to elevated CO2 in plant community composition in the first 5 years was consistent with the expectation of increased proportions of legumes and forbs. However, in the longer term, these differences diminished so that the proportions of grasses, legumes and forbs were the same under both ambient and elevated CO2 . Analysis of vegetation before and after each grazing event showed there was a sustained disproportionately greater removal ('apparent selection') of legumes and forbs by the grazing animals. This bias in removal was greater under elevated CO2 than ambient CO2 . This is consistent with sustained faster growth rates of legumes and forbs under elevated CO2 being countered by selective defoliation, and so leading to little difference in community composition.


Assuntos
Dióxido de Carbono , Fabaceae/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Ovinos/fisiologia , Animais , Ecossistema , Herbivoria , Nova Zelândia
13.
Ecol Evol ; 13(8): e10409, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37593757

RESUMO

The diversity-functioning relationship is a pillar of ecology. Two significant concepts have emerged from this relationship: redundancy, the asymptotic relationship between diversity and functioning, and multifunctionality, a monotonic relationship between diversity and multiple functions occurring simultaneously. However, multifunctional redundancy, an asymptotic relationship between diversity and multiple functions occurring simultaneously, is rarely detected in research. Here we assess whether this lack of detection is due to its true rarity, or due to systematic research error. We discuss how inconsistencies in the use of terms such as 'function' lead to mismatched research. We consider the different techniques used to calculate multifunctionality and point out a rarely considered issue: how determining a function's maximum rate affects multifunctionality metrics. Lastly, we critique how a lack of consideration of multitrophic, spatiotemporal, interactions and community assembly processes in designed experiments significantly reduces the likelihood of detecting multifunctional redundancy. Multifunctionality research up to this stage has made significant contributions to our understanding of the diversity-functioning relationship, and we believe that multifunctional redundancy is detectable with the use of appropriate methodologies.

14.
Environ Microbiol ; 14(12): 3081-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23039205

RESUMO

The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high-resolution 16S rRNA microarray (PhyloChip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5-10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Biota , Dióxido de Carbono/metabolismo , Fungos/metabolismo , Microbiologia do Solo , Solo/parasitologia , Archaea/genética , Austrália , Dióxido de Carbono/análise , Mudança Climática , Ecossistema , Fungos/genética , Temperatura Alta , Poaceae/química , Poaceae/microbiologia , Poaceae/parasitologia , Solo/análise
15.
Glob Chang Biol ; 18(9): 2681-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501048

RESUMO

In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only treatment, possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less-than-additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long-term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.

16.
J Chem Ecol ; 38(2): 204-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22318433

RESUMO

Plant secondary metabolites (PSMs) mediate a wide range of ecological interactions. Investigating the effect of environment on PSM production is important for our understanding of how plants will adapt to large scale environmental change, and the extended effects on communities and ecosystems. We explored the production of PSMs under elevated atmospheric carbon dioxide ([CO(2)]) in the species rich, ecologically and commercially important genus Eucalyptus. Seedlings from multiple Eucalyptus globulus and E. pauciflora populations were grown in common glasshouse gardens under elevated or ambient [CO(2)]. Variation in primary and secondary chemistry was determined as a function of genotype and treatment. There were clear population differences in PSM expression in each species. Elevated [CO(2)] did not affect concentrations of individual PSMs, total phenolics, condensed tannins or the total oil yield, and there was no population by [CO(2)] treatment interaction for any traits. Multivariate analysis revealed similar results with significant variation in concentrations of E. pauciflora oil components between populations. A [CO(2)] treatment effect was detected within populations but no interactions were found between elevated [CO(2)] and population. These eucalypt seedlings appear to be largely unresponsive to elevated [CO(2)], indicating stronger genetic than environmental (elevated [CO(2)]) control of expression of PSMs.


Assuntos
Dióxido de Carbono/farmacologia , Eucalyptus/efeitos dos fármacos , Eucalyptus/fisiologia , Relação Dose-Resposta a Droga , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Óleos Voláteis/metabolismo , Fenóis/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
17.
Nat Plants ; 5(2): 167-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737508

RESUMO

Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO2 response offset each other, constraining the response of ecosystem productivity to rising CO2. This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO2 could be substantially less than anticipated.


Assuntos
Dióxido de Carbono , Pradaria , Biomassa , Clima , Estações do Ano
18.
Nat Ecol Evol ; 3(9): 1309-1320, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427733

RESUMO

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.


Assuntos
Ciclo do Carbono , Ecossistema , Carbono , China , Europa (Continente)
19.
New Phytol ; 178(4): 815-822, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18346104

RESUMO

* Flowering is a critical stage in plant life cycles, and changes might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global change drivers are needed for predictions of global change impacts on natural and managed ecosystems. * Here, the impact of elevated atmospheric CO2 concentration ([CO2]) (550 micromol mol(-1)) and warming (+2 masculineC) is reported on flowering times in a native, species-rich, temperate grassland in Tasmania, Australia in both 2004 and 2005. * Elevated [CO2] did not affect average time of first flowering in either year, only affecting three out of 23 species. Warming reduced time to first flowering by an average of 19.1 d in 2004, acting on most species, but did not significantly alter flowering time in 2005, which might be related to the timing of rainfall. Elevated [CO2] and warming treatments did not interact on flowering time. * These results show elevated [CO2] did not alter average flowering time or duration in this grassland; neither did it alter the response to warming. Therefore, flowering phenology appears insensitive to increasing [CO2] in this ecosystem, although the response to warming varies between years but can be strong.


Assuntos
Dióxido de Carbono/farmacologia , Ecossistema , Flores/efeitos dos fármacos , Flores/fisiologia , Temperatura Alta , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Análise de Variância , Austrália , Clima , Chuva , Especificidade da Espécie , Fatores de Tempo
20.
New Phytol ; 180(1): 143-152, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18631296

RESUMO

In a water-limited system, the following hypotheses are proposed: warming will increase seedling mortality; elevated atmospheric CO2 will reduce seedling mortality by reducing transpiration, thereby increasing soil water availability; and longevity (i.e. whether a species is annual or perennial) will affect the response of a species to global changes. Here, these three hypotheses are tested by assessing the impact of elevated CO2 (550 micromol mol(-1) and warming (+2 degrees C) on seedling emergence, survivorship and establishment in an Australian temperate grassland from autumn 2004 to autumn 2007. Warming impacts on seedling survivorship were dependent upon species longevity. Warming reduced seedling survivorship of perennials through its effects on soil water potential but the seedling survivorship of annuals was reduced to a greater extent than could be accounted for by treatment effects on soil water potential. Elevated CO2 did not significantly affect seedling survivorship in annuals or perennials. These results show that warming will alter recruitment of perennial species by changing soil water potential but will reduce recruitment of annual species independent of any effects on soil moisture. The results also show that exposure to elevated CO2 does not make seedlings more resistant to dry soils.


Assuntos
Efeito Estufa , Desenvolvimento Vegetal , Plântula/crescimento & desenvolvimento , Solo , Dióxido de Carbono/metabolismo , Longevidade , Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Chuva , Plântula/metabolismo , Plântula/fisiologia , Tasmânia , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA