Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 1096-1108, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153401

RESUMO

We studied the evaporation-induced formation of supraparticles from dispersions of elongated colloidal particles using experiments and computer simulations. Aqueous droplets containing a dispersion of ellipsoidal and spherical polystyrene particles were dried on superamphiphobic surfaces at different humidity values that led to varying evaporation rates. Supraparticles made from only ellipsoidal particles showed short-range lateral ordering at the supraparticle surface and random orientations in the interior regardless of the evaporation rate. Particle-based simulations corroborated the experimental observations in the evaporation-limited regime and showed an increase in the local nematic ordering as the diffusion-limited regime was reached. A thin shell of ellipsoids was observed at the surface when supraparticles were made from binary mixtures of ellipsoids and spheres. Image analysis revealed that the supraparticle porosity increased with an increasing aspect ratio of the ellipsoids.

2.
Soft Matter ; 20(19): 3942-3953, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669202

RESUMO

We determine the long-time self-diffusion coefficient and sedimentation coefficient for suspensions of nanoparticles with anisotropic shapes (octahedra, cubes, tetrahedra, and spherocylinders) as a function of nanoparticle concentration using mesoscale simulations. We use a discrete particle model for the nanoparticles, and we account for solvent-mediated hydrodynamic interactions between nanoparticles using the multiparticle collision dynamics method. Our simulations are compared to theoretical predictions and experimental data from existing literature, demonstrating good agreement in the majority of cases. Further, we find that the self-diffusion coefficient of the regular polyhedral shapes can be estimated from that of a sphere whose diameter is the average of their inscribed and circumscribed sphere diameters.

3.
J Chem Phys ; 158(2): 024905, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641407

RESUMO

We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model's predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.


Assuntos
Polímeros , Polímeros/química , Soluções , Solventes/química , Difusão , Simulação por Computador
4.
Acc Chem Res ; 54(4): 798-807, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533588

RESUMO

Gels assembled from solvent-dispersed nanocrystals are of interest for functional materials because they promise the opportunity to retain distinctive properties of individual nanocrystals combined with tunable, structure-dependent collective behavior. By incorporating stimuli-responsive components, these materials could also be dynamically reconfigured between structurally distinct states. However, nanocrystal gels have so far been formed mostly through irreversible aggregation, which has limited the realization of these possibilities. Meanwhile, gelation strategies for larger colloidal microparticles have been developed using reversible physical or chemical interactions. These approaches have enabled the experimental navigation of theoretically predicted phase diagrams, helping to establish an understanding of how thermodynamic behavior can guide gel formation in these materials. However, the translation of these principles to the nanoscale poses both practical and fundamental challenges. The molecules guiding assembly can no longer be safely assumed to be vanishingly small compared to the particles nor large compared to the solvent.In this Account, we discuss recent progress toward the assembly of tunable nanocrystal gels using two strategies guided by equilibrium considerations: (1) reversible chemical bonding between functionalized nanocrystals and difunctional linker molecules and (2) nonspecific, polymer-induced depletion attractions. The effective nanocrystal attractions, mediated in both approaches by a secondary molecule, compete against stabilizing repulsions to promote reversible assembly. The structure and properties of the nanocrystal gels are controlled microscopically by the design of the secondary molecule and macroscopically by its concentration. This mode of control is compelling because it largely decouples nanocrystal synthesis and functionalization from the design of interactions that drive assembly. Statistical thermodynamic theory and computer simulation have been applied to simple models that describe the bonding motifs in these assembling systems, furnish predictions for conditions under which gelation is likely to occur, and suggest strategies for tuning and disassembling the gel networks. Insights from these models have guided experimental realizations of reversible gels with optical properties in the infrared range that are sensitive to the gel structure. This process avoids time-consuming and costly trial-and-error experimental investigations to accelerate the development of nanocrystal gel assemblies.These advances highlight the need to better understand interactions between nanocrystals, how interactions give rise to gel structure, and properties that emerge. Such an understanding could suggest new approaches for creating stimuli-responsive and dissipative assembled materials whose properties are tunable on demand through directed reconfiguration of the underlying gel microstructure. It may also make nanocrystal gels amenable to computationally guided design using inverse methods to rapidly optimize experimental parameters for targeted functionalities.

5.
J Chem Phys ; 157(18): 184904, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379796

RESUMO

Dynamic density functional theory (DDFT) is a promising approach for predicting the structural evolution of a drying suspension containing one or more types of colloidal particles. The assumed free-energy functional is a key component of DDFT that dictates the thermodynamics of the model and, in turn, the density flux due to a concentration gradient. In this work, we compare several commonly used free-energy functionals for drying hard-sphere suspensions, including local-density approximations based on the ideal-gas, virial, and Boublík-Mansoori-Carnahan-Starling-Leland (BMCSL) equations of state as well as a weighted-density approximation based on fundamental measure theory (FMT). To determine the accuracy of each functional, we model one- and two-component hard-sphere suspensions in a drying film with varied initial heights and compositions, and we compare the DDFT-predicted volume fraction profiles to particle-based Brownian dynamics (BD) simulations. FMT accurately predicts the structure of the one-component suspensions even at high concentrations and when significant density gradients develop, but the virial and BMCSL equations of state provide reasonable approximations for smaller concentrations at a reduced computational cost. In the two-component suspensions, FMT and BMCSL are similar to each other but modestly overpredict the extent of stratification by size compared to BD simulations. This work provides helpful guidance for selecting thermodynamic models for soft materials in nonequilibrium processes, such as solvent drying, solvent freezing, and sedimentation.

6.
J Chem Phys ; 156(2): 024901, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35032985

RESUMO

We study self-diffusion and sedimentation in colloidal suspensions of nearly hard spheres using the multiparticle collision dynamics simulation method for the solvent with a discrete mesh model for the colloidal particles (MD+MPCD). We cover colloid volume fractions from 0.01 to 0.40 and compare the MD+MPCD simulations to experimental data and Brownian dynamics simulations with free-draining hydrodynamics (BD) as well as pairwise far-field hydrodynamics described using the Rotne-Prager-Yamakawa mobility tensor (BD+RPY). The dynamics in MD+MPCD suggest that the colloidal particles are only partially coupled to the solvent at short times. However, the long-time self-diffusion coefficient in MD+MPCD is comparable to that in experiments, and the sedimentation coefficient in MD+MPCD is in good agreement with that in experiments and BD+RPY, suggesting that MD+MPCD gives a reasonable description of hydrodynamic interactions in colloidal suspensions. The discrete-particle MD+MPCD approach is convenient and readily extended to more complex shapes, and we determine the long-time self-diffusion coefficient in suspensions of nearly hard cubes to demonstrate its generality.

7.
J Chem Phys ; 154(2): 024905, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445904

RESUMO

We extend Wertheim's thermodynamic perturbation theory to derive the association free energy of a multicomponent mixture for which double bonds can form between any two pairs of the molecules' arbitrary number of bonding sites. This generalization reduces in limiting cases to prior theories that restrict double bonding to at most one pair of sites per molecule. We apply the new theory to an associating mixture of colloidal particles ("colloids") and flexible chain molecules ("linkers"). The linkers have two functional end groups, each of which may bond to one of several sites on the colloids. Due to their flexibility, a significant fraction of linkers can "loop" with both ends bonding to sites on the same colloid instead of bridging sites on different colloids. We use the theory to show that the fraction of linkers in loops depends sensitively on the linker end-to-end distance relative to the colloid bonding-site distance, which suggests strategies for mitigating the loop formation that may otherwise hinder linker-mediated colloidal assembly.

8.
J Chem Phys ; 154(7): 074901, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607876

RESUMO

Colloidal nanocrystal gels can be assembled using a difunctional "linker" molecule to mediate bonding between nanocrystals. The conditions for gelation and the structure of the gel are controlled macroscopically by the linker concentration and microscopically by the linker's molecular characteristics. Here, we demonstrate using a toy model for a colloid-linker mixture that linker flexibility plays a key role in determining both phase behavior and the structure of the mixture. We fix the linker length and systematically vary its bending stiffness to span the flexible, semiflexible, and rigid regimes. At fixed linker concentration, flexible-linker and rigid-linker mixtures phase separate at low colloid volume fractions, in agreement with predictions of first-order thermodynamic perturbation theory, but the semiflexible-linker mixtures do not. We correlate and attribute this qualitatively different behavior to undesirable "loop" linking motifs that are predicted to be more prevalent for linkers with end-to-end distances commensurate with the locations of chemical bonding sites on the colloids. Linker flexibility also influences the spacing between linked colloids, suggesting strategies to design gels with desired phase behavior, structure, and, by extension, structure-dependent properties.

9.
Nano Lett ; 20(5): 4007-4013, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32357005

RESUMO

Nanocrystal gelation provides a powerful framework to translate nanoscale properties into bulk materials and to engineer emergent properties through the assembled microstructure. However, many established gelation strategies rely on chemical reactions and specific interactions, e.g., stabilizing ligands or ions on the nanocrystals' surfaces, and are therefore not easily transferable. Here, we report a general gelation strategy via nonspecific and purely entropic depletion attractions applied to three types of metal oxide nanocrystals. The gelation thresholds of two compositionally distinct spherical nanocrystals agree quantitatively, demonstrating the adaptability of the approach for different chemistries. Consistent with theoretical phase behavior predictions, nanocrystal cubes form gels at a lower polymer concentration than nanocrystal spheres, allowing shape to serve as a handle to control gelation. These results suggest that the fundamental underpinnings of depletion-driven assembly, traditionally associated with larger colloidal particles, are also applicable at the nanoscale.

10.
J Chem Phys ; 153(5): 054901, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770900

RESUMO

We study the evaporation-induced stratification of a mixture of short and long polymer chains in a drying droplet using molecular simulations. We systematically investigate the effects of hydrodynamic interactions (HI) on this process by comparing hybrid simulations accounting for HI between polymers through the multiparticle collision dynamics technique with free-draining Langevin dynamics simulations neglecting the same. We find that the dried supraparticle morphologies are homogeneous when HI are included but are stratified in core-shell structures (with the short polymers forming the shell) when HI are neglected. The simulation methodology unambiguously attributes this difference to the treatment of the solvent in the two models. We rationalize the presence (or absence) of stratification by measuring phenomenological multicomponent diffusion coefficients for the polymer mixtures. The diffusion coefficients show the importance of not only solvent backflow but also HI between polymers in controlling the dried supraparticle morphology.

11.
J Chem Phys ; 152(21): 214113, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505137

RESUMO

We analyze the hydrodynamic stability of force-driven parallel shear flows in nonequilibrium molecular simulations with three-dimensional periodic boundary conditions. We show that flows simulated in this way can be linearly unstable, and we derive an expression for the critical Reynolds number as a function of the geometric aspect ratio of the simulation domain. Approximate periodic extensions of Couette and Poiseuille flows are unstable at Reynolds numbers two orders of magnitude smaller than their aperiodic equivalents because the periodic boundaries impose fundamentally different constraints on the flow. This instability has important implications for simulating shear rheology and for designing nonequilibrium simulation methods that are compatible with periodic boundary conditions.

12.
J Chem Phys ; 152(14): 140902, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295358

RESUMO

Functional soft materials, comprising colloidal and molecular building blocks that self-organize into complex structures as a result of their tunable interactions, enable a wide array of technological applications. Inverse methods provide a systematic means for navigating their inherently high-dimensional design spaces to create materials with targeted properties. While multiple physically motivated inverse strategies have been successfully implemented in silico, their translation to guiding experimental materials discovery has thus far been limited to a handful of proof-of-concept studies. In this perspective, we discuss recent advances in inverse methods for design of soft materials that address two challenges: (1) methodological limitations that prevent such approaches from satisfying design constraints and (2) computational challenges that limit the size and complexity of systems that can be addressed. Strategies that leverage machine learning have proven particularly effective, including methods to discover order parameters that characterize complex structural motifs and schemes to efficiently compute macroscopic properties from the underlying structure. We also highlight promising opportunities to improve the experimental realizability of materials designed computationally, including discovery of materials with functionality at multiple thermodynamic states, design of externally directed assembly protocols that are simple to implement in experiments, and strategies to improve the accuracy and computational efficiency of experimentally relevant models.

13.
J Chem Phys ; 152(1): 014904, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914764

RESUMO

Understanding the transport properties of water in self-assembled block copolymer morphologies is important for furthering the use of such materials as water-purifying membranes. In this study, we used coarse-grained dissipative particle dynamics simulations to clarify the influence of pore morphology on the self-diffusion of water in linear-triblock-copolymer membranes. We considered representative lamellar, cylindrical, and gyroid morphologies and present results for both the global and local diffusivities of water in the pores. Our results suggest that the diffusivity of water in the confined, polymer-coated pores differs from that in the unconfined bulk. Explicitly, in confinement, the mobility of water is reduced by the hydrodynamic friction arising from the hydrophilic blocks coating the pore walls. We demonstrate that in lamella and cylindrical morphologies, the latter effects can be rendered as a universal function of the pore size relative to the brush height of the hydrophilic blocks.

14.
Soft Matter ; 15(15): 3168-3178, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883631

RESUMO

The migration of a Brownian fluid droplet in a parallel-plate microchannel was investigated using dissipative particle dynamics computer simulations. In a Newtonian solvent, the droplet migrated toward the channel walls due to inertial effects at the studied flow conditions, in agreement with theoretical predictions and recent simulations. However, the droplet focused onto the channel centerline when polymer chains were added to the solvent. Focusing was typically enhanced for longer polymers and higher polymer concentrations with a nontrivial flow-rate dependence due to droplet and polymer deformability. Brownian motion caused the droplet position to fluctuate with a distribution that primarily depended on the balance between inertial lift forces pushing the droplet outward and elastic forces from the polymers driving it inward. The droplet shape was controlled by the local shear rate, and so its average shape depended on the droplet distribution.

15.
Soft Matter ; 15(23): 4689-4702, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31119245

RESUMO

Many clays, soils, biological tissues, foods, and coatings are shrinkable, granular materials: they are composed of packed, hydrated grains that shrink when dried. In many cases, these packings crack during drying, critically hindering applications. However, while cracking has been widely studied for bulk gels and packings of non-shrinkable grains, little is known about how packings of shrinkable grains crack. Here, we elucidate how grain shrinkage alters cracking during drying. Using experiments with model shrinkable hydrogel beads, we show that differential shrinkage can dramatically alter crack evolution during drying-in some cases, even causing cracks to spontaneously "self-close". In other cases, packings shrink without cracking or crack irreversibly. We developed both granular and continuum models to quantify the interplay between grain shrinkage, poromechanics, packing size, drying rate, capillarity, and substrate friction on cracking. Guided by the theory, we also found that cracking can be completely altered by varying the spatial profile of drying. Our work elucidates the rich physics underlying cracking in shrinkable, granular packings, and yields new strategies for controlling crack evolution.

16.
Soft Matter ; 15(6): 1260-1268, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30444237

RESUMO

The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of semiflexible polymer chains with tunable persistence length lp to investigate the effect of chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes - subdiffusion on short time scales and diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the Stokes-Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains become more rigid (i.e. as lp increases) indicate that the NP motions become decoupled from the bulk viscosity of the polymer solution. Likewise, polymer stiffness leads to deviations from PCT, which was developed for fully flexible chains. Independent of lp, however, the long-time diffusion behavior is well-described by MCT, particularly at high polymer concentration. We also observed that the short-time subdiffusive dynamics are strongly dependent on polymer flexibility. As lp is increased, the NP dynamics become more subdiffusive and decouple from the dynamics of the polymer chain center-of-mass. We posit that these effects are due to differences in the segmental mobility of the semiflexible chains.

17.
J Chem Phys ; 151(10): 104104, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521076

RESUMO

Isotropic pairwise interactions that promote the self-assembly of complex particle morphologies have been discovered by inverse design strategies derived from the molecular coarse-graining literature. While such approaches provide an avenue to reproduce structural correlations, thermodynamic quantities such as the pressure have typically not been considered in self-assembly applications. In this work, we demonstrate that relative entropy optimization can be used to discover potentials that self-assemble into targeted cluster morphologies with a prescribed pressure when the iterative simulations are performed in the isothermal-isobaric ensemble. The benefits of this approach are twofold. First, the structure and the thermodynamics associated with the optimized interaction can be controlled simultaneously. Second, by varying the pressure in the optimization, a family of interparticle potentials that all self-assemble the same structure can be systematically discovered, allowing for a deeper understanding of self-assembly of a given target structure and providing multiple assembly routes for its realization. Selecting an appropriate simulation ensemble to control the thermodynamic properties of interest is a general design strategy that could also be used to discover interaction potentials that self-assemble structures having, for example, a specified chemical potential.

18.
J Chem Phys ; 151(12): 124901, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575167

RESUMO

Low-density "equilibrium" gels that consist of a percolated, kinetically arrested network of colloidal particles and are resilient to aging can be fabricated by restricting the number of effective bonds that form between the colloids. Valence-restricted patchy particles have long served as one archetypal example of such materials, but equilibrium gels can also be realized through a synthetically simpler and scalable strategy that introduces a secondary linker, such as a small ditopic molecule, to mediate the bonds between the colloids. Here, we consider the case where the ditopic linker molecules are low-molecular-weight polymers and demonstrate using a model colloid-polymer mixture how macroscopic properties such as the phase behavior as well as the microstructure of the gel can be designed through the polymer molecular weight and concentration. The low-density window for equilibrium gel formation is favorably expanded using longer linkers while necessarily increasing the spacing between all colloids. However, we show that blends of linkers with different sizes enable wider variation in microstructure for a given target phase behavior. Our computational study suggests a robust and tunable strategy for the experimental realization of equilibrium colloidal gels.

19.
J Chem Phys ; 149(2): 024902, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007382

RESUMO

Nonequilibrium molecular dynamics simulations are used to investigate the influence of hydrodynamic interactions on vertical segregation (stratification) in drying mixtures of long and short polymer chains. In agreement with previous computer simulations and theoretical modeling, the short polymers stratify above the long polymers at the top of the drying film when hydrodynamic interactions between polymers are neglected. However, no stratification occurs under the same drying conditions when hydrodynamic interactions are incorporated through an explicit solvent model. Our analysis demonstrates that models lacking hydrodynamic interactions do not faithfully represent stratification in drying mixtures, in agreement with the recent analysis of an idealized model for diffusiophoresis. Hydrodynamic interactions must be incorporated into such models for drying mixtures in future.

20.
J Chem Phys ; 149(9): 094901, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195293

RESUMO

Colloidal crystals are often prepared by evaporation from solution, and there is considerable interest to link the processing conditions to the crystal morphology and quality. Here, we study the evaporation-induced assembly of colloidal crystals using massive-scale nonequilibrium molecular dynamics simulations. We apply a recently developed machine-learning technique to characterize the assembling crystal structures with unprecedented microscopic detail. In agreement with previous experiments and simulations, faster evaporation rates lead to earlier onset of crystallization and more disordered surface structures. Surprisingly, we find that collective rearrangements of the bulk crystal during later stages of drying reduce the influence of the initial surface structure, and the final morphology is essentially independent of the evaporation rate. Our structural analysis reveals that the crystallization process is well-described by two time scales, the film drying time and the crystal growth time, with the latter having an unexpected dependence on the evaporation rate due to equilibrium thermodynamic effects at high colloid concentrations. These two time scales may be leveraged to control the relative influence of equilibrium and nonequilibrium growth mechanisms, suggesting a route to rapidly process colloidal crystals while also removing defects. Our analysis additionally reveals that solvent-mediated interactions play a critical role in the crystallization kinetics and that commonly used implicit-solvent models do not faithfully resolve nonequilibrium processes such as drying.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA