Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 41(8): e2000069, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32167639

RESUMO

In nature, animals such as chameleons are well-known for the complex color patterns of their skin and the ability to adapt and change the color by manipulating sophisticated photonic crystal systems. Artificial gradient photonic materials are inspired by these color patterns. A concept for the preparation of such materials and their function as tunable mechanochromic materials is presented in this work. The system consists of a 1D polymer photonic crystal on a centimeter scale on top of an elastic poly(dimethylsiloxane) substrate with a gradient in stiffness. In the unstrained state, this system reveals a uniform red reflectance over the entire sample. Upon deformation, a gradient in local strain of the substrate is formed and transferred to the photonic crystal. Depending on the magnitude of this local strain, the thickness of the photonic crystal decreases continuously, resulting in a position-dependent blue shift of the reflectance peak and hence the color in a rainbow-like fashion. Using more sophisticated hard-soft-hard-soft-hard gradient elastomers enables the realization of stripe-like reflectance patterns. Thus, this approach allows for the tunable formation of reflectance gradients and complex reflectance patterns. Envisioned applications are in the field of mechanochromic sensors, telemedicine, smart materials, and metamaterials.


Assuntos
Dimetilpolisiloxanos/química , Fótons , Cristalização , Teste de Materiais
2.
ACS Appl Mater Interfaces ; 10(9): 8173-8179, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29436219

RESUMO

Metallic photonic crystals (MPCs) exhibit wavelength-selective thermal emission enhancements and are promising thermal optical devices for various applications. Here, we report a scalable fabrication strategy for MPCs suitable for high-temperature applications. Well-defined double-layer titanium dioxide (TiO2) woodpile structures are fabricated using a layer-by-layer soft-imprint method with TiO2 nanoparticle ink dispersions, and the structures are subsequently coated with high purity, conformal gold films via reactive deposition from supercritical carbon dioxide. The resulting gold-coated woodpile structures are effective MPCs and exhibit emissivity enhancements at a selective wavelength. Gold coatings deposited using a cold-wall reactor are found to be smoother and result in a greater thermal emission enhancement compared to those deposited using a hot-wall reactor.

3.
ACS Appl Mater Interfaces ; 10(6): 5447-5454, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29369613

RESUMO

The trend of device downscaling drives a corresponding need for power source miniaturization. Though numerous microfabrication methods lead to successful creation of submillimeter-scale electrodes, scalable approaches that provide cost-effective nanoscale resolution for energy storage devices such as on-chip batteries remain elusive. Here, we report nanoimprint lithography (NIL) as a direct patterning technique to fabricate high-performance TiO2 nanoelectrode arrays for lithium-ion batteries (LIBs) over relatively large areas. The critical electrode dimension is below 200 nm, which enables the structure to possess favorable rate capability even under discharging current densities as high as 5000 mA g-1. In addition, by sequential imprinting, electrodes with three-dimensional (3D) woodpile architecture were readily made in a "stack-up" manner. The height of architecture can be easily controlled by the number of stacked layers while maintaining nearly constant surface-to-volume ratios. The result is a proportional increase of areal capacity with the number of layers. The structure-processing combination leads to efficient use of the material, and the resultant specific capacity (250.9 mAh g-1) is among the highest reported. This work provides a simple yet effective strategy to fabricate nanobatteries and can be potentially extended to other electroactive materials.

4.
ACS Appl Mater Interfaces ; 7(6): 3641-6, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25647806

RESUMO

We demonstrate the fabrication and performance of tunable, elastic organic/inorganic composite one-dimensional photonic crystals (1DPCs) in the visible spectrum. By controlling the composition of high refractive index metal oxide nanoparticle/polymer composites, a refractive index difference of 0.18 between the filled and unfilled polymer layers can be achieved while maintaining desirable flexibility and elasticity. This index contrast is achieved with a loading of 70 wt % zirconium dioxide nanoparticles within a slide-ring elastomer matrix, which is composed of topologically cross-linked polyrotaxane polyols. The large refractive index contrast enables high reflectivity while simultaneously minimizing the number of layers necessary, compared to purely polymer systems. Because the films are both flexible and elastic, these nanocomposite 1DPCs can function as colorimetric strain sensors. We demonstrate the sensing behavior of these 1DPCs by applying over 40% strain, resulting in a visible color shift across the visible spectrum from red to blue. 1DPCs of just 6 periods maintain reflectance of 40% throughout the visible spectrum, with a tensile mechanochromic sensitivity (Δλ/Δεmax) as high as -6.05 nm/%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA