Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Neurosci ; 23(7): 125, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39082285

RESUMO

This review provides a comprehensive examination of recent developments in both neurofeedback and brain-computer interface (BCI) within the medical field and rehabilitation. By analyzing and comparing results obtained with various tools and techniques, we aim to offer a systematic understanding of BCI applications concerning different modalities of neurofeedback and input data utilized. Our primary objective is to address the existing gap in the area of meta-reviews, which provides a more comprehensive outlook on the field, allowing for the assessment of the current landscape and developments within the scope of BCI. Our main methodologies include meta-analysis, search queries employing relevant keywords, and a network-based approach. We are dedicated to delivering an unbiased evaluation of BCI studies, elucidating the primary vectors of research development in this field. Our review encompasses a diverse range of applications, incorporating the use of brain-computer interfaces for rehabilitation and the treatment of various diagnoses, including those related to affective spectrum disorders. By encompassing a wide variety of use cases, we aim to offer a more comprehensive perspective on the utilization of neurofeedback treatments across different contexts. The structured and organized presentation of information, complemented by accompanying visualizations and diagrams, renders this review a valuable resource for scientists and researchers engaged in the domains of biofeedback and brain-computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Transtornos Mentais , Doenças do Sistema Nervoso , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Transtornos Mentais/reabilitação , Doenças do Sistema Nervoso/reabilitação , Reabilitação Neurológica/métodos
2.
Chaos ; 34(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39383456

RESUMO

The problem of hidden data recovery is crucial in various scientific and technological fields, particularly in neurophysiology, where experimental data can often be incomplete or corrupted. We investigate the application of reservoir computing (RC) to recover hidden data from both model Kuramoto network system and real neurophysiological signals (EEG). Using an adaptive network of Kuramoto phase oscillators, we generated and analyzed macroscopic signals to understand the efficiency of RC in hidden signal recovery compared to linear regression (LR). Our findings indicate that RC significantly outperforms LR, especially in scenarios with reduced signal information. Furthermore, when applied to real EEG data, RC achieved more accurate signal reconstruction than traditional spline interpolation methods. These results underscore RC's potential for enhancing data recovery in neurophysiological studies, offering a robust solution to improve data integrity and reliability, which is essential for accurate scientific analysis and interpretation.


Assuntos
Encéfalo , Eletroencefalografia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Humanos , Processamento de Sinais Assistido por Computador , Modelos Neurológicos , Redes Neurais de Computação
3.
Chaos ; 33(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318340

RESUMO

We address the interpretability of the machine learning algorithm in the context of the relevant problem of discriminating between patients with major depressive disorder (MDD) and healthy controls using functional networks derived from resting-state functional magnetic resonance imaging data. We applied linear discriminant analysis (LDA) to the data from 35 MDD patients and 50 healthy controls to discriminate between the two groups utilizing functional networks' global measures as the features. We proposed the combined approach for feature selection based on statistical methods and the wrapper-type algorithm. This approach revealed that the groups are indistinguishable in the univariate feature space but become distinguishable in a three-dimensional feature space formed by the identified most important features: mean node strength, clustering coefficient, and the number of edges. LDA achieves the highest accuracy when considering the network with all connections or only the strongest ones. Our approach allowed us to analyze the separability of classes in the multidimensional feature space, which is critical for interpreting the results of machine learning models. We demonstrated that the parametric planes of the control and MDD groups rotate in the feature space with increasing the thresholding parameter and that their intersection increases with approaching the threshold of 0.45, for which classification accuracy is minimal. Overall, the combined approach for feature selection provides an effective and interpretable scenario for discriminating between MDD patients and healthy controls using measures of functional connectivity networks. This approach can be applied to other machine learning tasks to achieve high accuracy while ensuring the interpretability of the results.


Assuntos
Transtorno Depressivo Maior , Humanos , Mapeamento Encefálico/métodos , Máquina de Vetores de Suporte , Aprendizado de Máquina , Algoritmos
4.
Chaos ; 33(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712918

RESUMO

We present a novel method for analyzing brain functional networks using functional magnetic resonance imaging data, which involves utilizing consensus networks. In this study, we compare our approach to a standard group-based method for patients diagnosed with major depressive disorder (MDD) and a healthy control group, taking into account different levels of connectivity. Our findings demonstrate that the consensus network approach uncovers distinct characteristics in network measures and degree distributions when considering connection strengths. In the healthy control group, as connection strengths increase, we observe a transition in the network topology from a combination of scale-free and random topologies to a small-world topology. Conversely, the MDD group exhibits uncertainty in weak connections, while strong connections display small-world properties. In contrast, the group-based approach does not exhibit significant differences in behavior between the two groups. However, it does indicate a transition in topology from a scale-free-like structure to a combination of small-world and scale-free topologies. The use of the consensus network approach also holds immense potential for the classification of MDD patients, as it unveils substantial distinctions between the two groups.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Consenso , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Incerteza
5.
Sensors (Basel) ; 23(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005672

RESUMO

Tactile perception encompasses several submodalities that are realized with distinct sensory subsystems. The processing of those submodalities and their interactions remains understudied. We developed a paradigm consisting of three types of touch tuned in terms of their force and velocity for different submodalities: discriminative touch (haptics), affective touch (C-tactile touch), and knismesis (alerting tickle). Touch was delivered with a high-precision robotic rotary touch stimulation device. A total of 39 healthy individuals participated in the study. EEG cluster analysis revealed a decrease in alpha and beta range (mu-rhythm) as well as theta and delta increase most pronounced to the most salient and fastest type of stimulation. The participants confirmed that slower stimuli targeted to affective touch low-threshold receptors were the most pleasant ones, and less intense stimuli aimed at knismesis were indeed the most ticklish ones, but those sensations did not form an EEG cluster, probably implying their processing involves deeper brain structures that are less accessible with EEG.


Assuntos
Robótica , Percepção do Tato , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia , Emoções , Encéfalo , Estimulação Física
6.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514714

RESUMO

Sensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age. The current study focuses on an auditory-based SI task and explores: (i) if the repetition of such a task can modify neural activity associated with SI, and (ii) if this effect is different in young and healthy old age. A group of healthy older subjects and young controls underwent an assessment of the whole-brain electroencephalography (EEG) while repetitively executing a motor task cued by the auditory signal. Using EEG spectral power and functional connectivity analyses, we observed a differential age-related modulation of theta activity throughout the repetition of the SI task. Growth of the anterior stimulus-related theta oscillations accompanied by enhanced right-lateralized frontotemporal phase-locking was found in elderly adults. Their young counterparts demonstrated a progressive increase in prestimulus occipital theta power. Our results suggest that the short-term repetition of the auditory-based SI task modulates sensory processing in the elderly. Older participants most likely progressively improve perceptual integration rather than attention-driven processing compared to their younger counterparts.


Assuntos
Encéfalo , Eletroencefalografia , Adulto , Humanos , Idoso , Encéfalo/fisiologia , Mapeamento Encefálico , Sensação
7.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430576

RESUMO

Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Magnética Transcraniana , Humanos , Ritmo Teta , Imagens, Psicoterapia , Projetos de Pesquisa
8.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991871

RESUMO

In this study, we investigated the neural and behavioral mechanisms associated with precision visual-motor control during the learning of sport shooting. We developed an experimental paradigm adapted for naïve individuals and a multisensory experimental paradigm. We showed that in the proposed experimental paradigms, subjects trained well and significantly increased their accuracy. We also identified several psycho-physiological parameters that were associated with shooting outcomes, including EEG biomarkers. In particular, we observed an increase in head-averaged delta and right temporal alpha EEG power before missing shots, as well as a negative correlation between theta-band energies in the frontal and central brain regions and shooting success. Our findings suggest that the multimodal analysis approach has the potential to be highly informative in studying the complex processes involved in visual-motor control learning and may be useful for optimizing training processes.


Assuntos
Desempenho Psicomotor , Esportes , Humanos , Desempenho Psicomotor/fisiologia , Psicofisiologia , Aprendizagem/fisiologia , Encéfalo/fisiologia , Eletroencefalografia
9.
Chaos ; 32(10): 103126, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319291

RESUMO

Forecasting a system's behavior is an essential task encountering the complex systems theory. Machine learning offers supervised algorithms, e.g., recurrent neural networks and reservoir computers that predict the behavior of model systems whose states consist of multidimensional time series. In real life, we often have limited information about the behavior of complex systems. The brightest example is the brain neural network described by the electroencephalogram. Forecasting the behavior of these systems is a more challenging task but provides a potential for real-life application. Here, we trained reservoir computer to predict the macroscopic signal produced by the network of phase oscillators. The Lyapunov analysis revealed the chaotic nature of the signal and reservoir computer failed to forecast it. Augmenting the feature space using Takkens' theorem improved the quality of forecasting. RC achieved the best prediction score when the number of signals coincided with the embedding dimension estimated via the nearest false neighbors method. We found that short-time prediction required a large number of features, while long-time prediction utilizes a limited number of features. These results refer to the bias-variance trade-off, an important concept in machine learning.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Previsões , Eletroencefalografia
10.
Chaos ; 32(3): 033117, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364843

RESUMO

We have proposed and studied both numerically and experimentally a multistable system based on a self-sustained Van der Pol oscillator coupled to passive oscillatory circuits. The number of passive oscillators determines the number of multistable oscillatory regimes coexisting in the proposed system. It is shown that our system can be used in robotics applications as a simple model for a central pattern generator (CPG). In this case, the amplitude and phase relations between the active and passive oscillators control a gait, which can be adjusted by changing the system control parameters. Variation of the active oscillator's natural frequency leads to hard switching between the regimes characterized by different phase shifts between the oscillators. In contrast, the external forcing can change the frequency and amplitudes of oscillations, preserving the phase shifts. Therefore, the frequency of the external signal can serve as a control parameter of the model regime and realize a feedback in the proposed CPG depending on the environmental conditions. In particular, it allows one to switch the regime and change the velocity of the robot's gate and tune the gait to the environment. We have also shown that the studied oscillatory regimes in the proposed system are robust and not affected by external noise or fluctuations of the system parameters. Moreover, using the proposed scheme, we simulated the type of bipedal locomotion, including walking and running.


Assuntos
Geradores de Padrão Central , Robótica , Retroalimentação , Marcha , Caminhada
11.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408153

RESUMO

Large-scale functional connectivity is an important indicator of the brain's normal functioning. The abnormalities in the connectivity pattern can be used as a diagnostic tool to detect various neurological disorders. The present paper describes the functional connectivity assessment based on artificial intelligence to reveal age-related changes in neural response in a simple motor execution task. Twenty subjects of two age groups performed repetitive motor tasks on command, while the whole-scalp EEG was recorded. We applied the model based on the feed-forward multilayer perceptron to detect functional relationships between five groups of sensors located over the frontal, parietal, left, right, and middle motor cortex. Functional dependence was evaluated with the predicted and original time series coefficient of determination. Then, we applied statistical analysis to highlight the significant features of the functional connectivity network assessed by our model. Our findings revealed the connectivity pattern is consistent with modern ideas of the healthy aging effect on neural activation. Elderly adults demonstrate a pronounced activation of the whole-brain theta-band network and decreased activation of frontal-parietal and motor areas of the mu-band. Between-subject analysis revealed a strengthening of inter-areal task-relevant links in elderly adults. These findings can be interpreted as an increased cognitive demand in elderly adults to perform simple motor tasks with the dominant hand, induced by age-related working memory decline.


Assuntos
Inteligência Artificial , Córtex Motor , Adulto , Idoso , Encéfalo/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Redes Neurais de Computação
12.
Chaos ; 31(6): 063103, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34241300

RESUMO

Many living and artificial systems possess structural and dynamical properties of complex networks. One of the most exciting living networked systems is the brain, in which synchronization is an essential mechanism of its normal functioning. On the other hand, excessive synchronization in neural networks reflects undesired pathological activity, including various forms of epilepsy. In this context, network-theoretical approach and dynamical modeling may uncover deep insight into the origins of synchronization-related brain disorders. However, many models do not account for the resource consumption needed for the neural networks to synchronize. To fill this gap, we introduce a phenomenological Kuramoto model evolving under the excitability resource constraints. We demonstrate that the interplay between increased excitability and explosive synchronization induced by the hierarchical organization of the network forces the system to generate short-living extreme synchronization events, which are well-known signs of epileptic brain activity. Finally, we establish that the network units occupying the medium levels of hierarchy most strongly contribute to the birth of extreme events emphasizing the focal nature of their origin.


Assuntos
Epilepsia , Substâncias Explosivas , Encéfalo , Humanos , Redes Neurais de Computação
13.
Chaos ; 31(10): 101106, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717312

RESUMO

One must be aware of the black-box problem by applying machine learning models to analyze high-dimensional neuroimaging data. It is due to a lack of understanding of the internal algorithms or the input features upon which most models make decisions despite outstanding performance in classification, pattern recognition, and prediction. Here, we approach the fundamentally high-dimensional problem of classifying cognitive brain states based on functional connectivity by selecting and interpreting the most relevant input features. Specifically, we consider the alterations in the cortical synchrony under a prolonged cognitive load. Our study highlights the advances of this machine learning method in building a robust classification model and percept-related prestimulus connectivity changes over the conventional trial-averaged statistical analysis.


Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo , Cognição
14.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918223

RESUMO

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3-0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


Assuntos
Tomada de Decisões , Análise de Ondaletas , Biomarcadores , Eletroencefalografia
15.
Sensors (Basel) ; 21(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34577225

RESUMO

In this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning. However, this difference diminished at the end of table completion to 1.8 times. In children, the EEG analysis revealed high parietal alpha-band power at the end of the task. This indicates the shift from procedural strategy to less demanding fact-retrieval. In adults, the frontal beta-band power increased at the end of the task. It reflects enhanced reliance on the top-down mechanisms, cognitive control, or attentional modulation rather than a change in arithmetic strategy. Finally, the alpha-band power of adults exceeded one of the children in the left hemisphere, providing potential evidence for the fact-retrieval strategy. Since the completion of the Schulte table involves a whole set of elementary cognitive functions, the obtained results were essential for developing passive brain-computer interfaces for monitoring and adjusting a human state in the process of learning and solving cognitive tasks of various types.


Assuntos
Encéfalo , Eletroencefalografia , Adulto , Atenção , Criança , Cognição , Humanos , Memória de Curto Prazo
16.
J Sleep Res ; 29(6): e12927, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578791

RESUMO

Cortico-thalamocortical networks generate sleep spindles and slow waves during non-rapid eye movement sleep, as well as paroxysmal spike-wave discharges (i.e. electroencephalogram manifestation of absence epilepsy) and 5-9-Hz oscillations in genetic rat models (i.e. pro-epileptic activity). Absence epilepsy is a disorder of the thalamocortical network. We tested a hypothesis that absence epilepsy associates with changes in the slow-wave activity before the onset of sleep spindles and pro-epileptic 5-9-Hz oscillations. The study was performed in the WAG/Rij genetic rat model of absence epilepsy and Wistar rats at the age of 9-12 months. Electroencephalograms were recorded with epidural electrodes from the anterior cortex. Sleep spindles (10-15 Hz), 5-9-Hz oscillations and their slow-wave (2-7 Hz) precursors were automatically detected and analysed using continuous wavelet transform. Subjects with electroencephalogram seizures (the "epileptic" phenotype) and without seizure activity (the "non-epileptic" phenotype) were identified in both strains. It was found that time-amplitude features of sleep spindles and 5-9-Hz oscillations were similar in both rat strains and in both phenotypes. Sleep spindles in "epileptic" rats were more often preceded by the slow-wave (~4 Hz) activity than in "non-epileptic" rats. The intrinsic frequency of slow-wave precursors of sleep spindles and 5-9-Hz oscillations in "epileptic" rats was 1-1.5 Hz higher than in "non-epileptic" rats. In general, our results indicated that absence epilepsy associated with: (a) the reinforcement of slow waves immediately prior to normal sleep spindles; and (b) weakening of amplitude growth in transition "slow wave → spindle/5-9-Hz oscillation".


Assuntos
Eletroencefalografia/métodos , Epilepsia Tipo Ausência/diagnóstico , Fases do Sono/fisiologia , Animais , Modelos Animais de Doenças , Epilepsia Tipo Ausência/patologia , Masculino , Ratos , Ratos Wistar
17.
Chaos ; 30(12): 121108, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380048

RESUMO

A multilayer approach has recently received particular attention in network neuroscience as a suitable model to describe brain dynamics by adjusting its activity in different frequency bands, time scales, modalities, or ages to different layers of a multiplex graph. In this paper, we demonstrate an approach to a frequency-based multilayer functional network constructed from nonstationary multivariate data by analyzing recurrences in application to electroencephalography. Using the recurrence-based index of synchronization, we construct intralayer (within-frequency) and interlayer (cross-frequency) graph edges to model the evolution of a whole-head functional connectivity network during a prolonged stimuli classification task. We demonstrate that the graph edges' weights increase during the experiment and negatively correlate with the response time. We also show that while high-frequency activity evolves toward synchronization of remote local areas, low-frequency connectivity tends to establish large-scale coupling between them.


Assuntos
Encéfalo , Eletroencefalografia , Mapeamento Encefálico , Causalidade , Humanos , Recidiva
18.
Chaos ; 30(8): 081102, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32872824

RESUMO

Interaction within an ensemble of coupled nonlinear oscillators induces a variety of collective behaviors. One of the most fascinating is a chimera state that manifests the coexistence of spatially distinct populations of coherent and incoherent elements. Understanding of the emergent chimera behavior in controlled experiments or real systems requires a focus on the consideration of heterogeneous network models. In this study, we explore the transitions in a heterogeneous Kuramoto model under the monotonical increase of the coupling strength and specifically find that this system exhibits a frequency-modulated chimera-like pattern during the explosive transition to synchronization. We demonstrate that this specific dynamical regime originates from the interplay between (the evolved) attractively and repulsively coupled subpopulations. We also show that the above-mentioned chimera-like state is induced under weakly non-local, small-world, and sparse scale-free coupling and suppressed in globally coupled, strongly rewired, and dense scale-free networks due to the emergence of the large-scale connections.

19.
Chaos ; 30(2): 023111, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32113225

RESUMO

The development of new approaches to detect motor-related brain activity is key in many aspects of science, especially in brain-computer interface applications. Even though some well-known features of motor-related electroencephalograms have been revealed using traditionally applied methods, they still lack a robust classification of motor-related patterns. Here, we introduce new features of motor-related brain activity and uncover hidden mechanisms of the underlying neuronal dynamics by considering event-related desynchronization (ERD) of µ-rhythm in the sensorimotor cortex, i.e., tracking the decrease of the power spectral density in the corresponding frequency band. We hypothesize that motor-related ERD is associated with the suppression of random fluctuations of µ-band neuronal activity. This is due to the lowering of the number of active neuronal populations involved in the corresponding oscillation mode. In this case, we expect more regular dynamics and a decrease in complexity of the EEG signal recorded over the sensorimotor cortex. In order to support this, we apply measures of signal complexity by means of recurrence quantification analysis (RQA). In particular, we demonstrate that certain RQA quantifiers are very useful to detect the moment of movement onset and, therefore, are able to classify the laterality of executed movements.


Assuntos
Eletroencefalografia , Atividade Motora/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
20.
Sensors (Basel) ; 20(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326270

RESUMO

Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.


Assuntos
Encéfalo/fisiologia , Córtex Motor/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Hemodinâmica/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA