Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pediatr Radiol ; 52(11): 2074-2086, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664088

RESUMO

In medicine, particularly in radiology, there are great expectations in artificial intelligence (AI), which can "see" more than human radiologists in regard to, for example, tumor size, shape, morphology, texture and kinetics - thus enabling better care by earlier detection or more precise reports. Another point is that AI can handle large data sets in high-dimensional spaces. But it should not be forgotten that AI is only as good as the training samples available, which should ideally be numerous enough to cover all variants. On the other hand, the main feature of human intelligence is content knowledge and the ability to find near-optimal solutions. The purpose of this paper is to review the current complexity of radiology working places, to describe their advantages and shortcomings. Further, we give an AI overview of the different types and features as used so far. We also touch on the differences between AI and human intelligence in problem-solving. We present a new AI type, labeled "explainable AI," which should enable a balance/cooperation between AI and human intelligence - thus bringing both worlds in compliance with legal requirements. For support of (pediatric) radiologists, we propose the creation of an AI assistant that augments radiologists and keeps their brain free for generic tasks.


Assuntos
Inteligência Artificial , Radiologia , Criança , Humanos , Radiografia , Radiologistas , Radiologia/métodos
2.
Sensors (Basel) ; 21(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925186

RESUMO

In this paper, we investigate the possibilities for augmenting interaction around the mobile device, with the aim of enabling input techniques that do not rely on typical touch-based gestures. The presented research focuses on utilizing a built-in magnetic field sensor, whose readouts are intentionally affected by moving a strong permanent magnet around a smartphone device. Different approaches for supporting magnet-based Around-Device Interaction are applied, including magnetic field fingerprinting, curve-fitting modeling, and machine learning. We implemented the corresponding proof-of-concept applications that incorporate magnet-based interaction. Namely, text entry is achieved by discrete positioning of the magnet within a keyboard mockup, and free-move pointing is enabled by monitoring the magnet's continuous movement in real-time. The related solutions successfully expand both the interaction language and the interaction space in front of the device without altering its hardware or involving sophisticated peripherals. A controlled experiment was conducted to evaluate the provided text entry method initially. The obtained results were promising (text entry speed of nine words per minute) and served as a motivation for implementing new interaction modalities. The use of neural networks has shown to be a better approach than curve fitting to support free-move pointing. We demonstrate how neural networks with a very small number of input parameters can be used to provide highly usable pointing with an acceptable level of error (mean absolute error of 3 mm for pointer position on the smartphone display).

3.
Entropy (Basel) ; 21(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267052

RESUMO

The paper proposes a segmentation and classification technique for fracture detection in X-ray images. This novel rotation-invariant method introduces the concept of local entropy for de-noising and removing tissue from the analysed X-ray images, followed by an improved procedure for image segmentation and the detection of regions of interest. The proposed local Shannon entropy was calculated for each image pixel using a sliding 2D window. An initial image segmentation was performed on the entropy representation of the original image. Next, a graph theory-based technique was implemented for the purpose of removing false bone contours and improving the edge detection of long bones. Finally, the paper introduces a classification and localisation procedure for fracture detection by tracking the difference between the extracted contour and the estimation of an ideal healthy one. The proposed hybrid method excels at detecting small fractures (which are hard to detect visually by a radiologist) in the ulna and radius bones-common injuries in children. Therefore, it is imperative that a radiologist inspecting the X-ray image receives a warning from the computerised X-ray analysis system, in order to prevent false-negative diagnoses. The proposed method was applied to a data-set containing 860 X-ray images of child radius and ulna bones (642 fracture-free images and 218 images containing fractures). The obtained results showed the efficiency and robustness of the proposed approach, in terms of segmentation quality and classification accuracy and precision (up to 91.16 % and 86.22 % , respectively).

4.
BioData Min ; 17(1): 22, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997749

RESUMO

BACKGROUND: The use of machine learning in medical diagnosis and treatment has grown significantly in recent years with the development of computer-aided diagnosis systems, often based on annotated medical radiology images. However, the lack of large annotated image datasets remains a major obstacle, as the annotation process is time-consuming and costly. This study aims to overcome this challenge by proposing an automated method for annotating a large database of medical radiology images based on their semantic similarity. RESULTS: An automated, unsupervised approach is used to create a large annotated dataset of medical radiology images originating from the Clinical Hospital Centre Rijeka, Croatia. The pipeline is built by data-mining three different types of medical data: images, DICOM metadata and narrative diagnoses. The optimal feature extractors are then integrated into a multimodal representation, which is then clustered to create an automated pipeline for labelling a precursor dataset of 1,337,926 medical images into 50 clusters of visually similar images. The quality of the clusters is assessed by examining their homogeneity and mutual information, taking into account the anatomical region and modality representation. CONCLUSIONS: The results indicate that fusing the embeddings of all three data sources together provides the best results for the task of unsupervised clustering of large-scale medical data and leads to the most concise clusters. Hence, this work marks the initial step towards building a much larger and more fine-grained annotated dataset of medical radiology images.

5.
J Imaging Inform Med ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020155

RESUMO

Multiple studies within the medical field have highlighted the remarkable effectiveness of using convolutional neural networks for predicting medical conditions, sometimes even surpassing that of medical professionals. Despite their great performance, convolutional neural networks operate as black boxes, potentially arriving at correct conclusions for incorrect reasons or areas of focus. Our work explores the possibility of mitigating this phenomenon by identifying and occluding confounding variables within images. Specifically, we focused on the prediction of osteopenia, a serious medical condition, using the publicly available GRAZPEDWRI-DX dataset. After detection of the confounding variables in the dataset, we generated masks that occlude regions of images associated with those variables. By doing so, models were forced to focus on different parts of the images for classification. Model evaluation using F1-score, precision, and recall showed that models trained on non-occluded images typically outperformed models trained on occluded images. However, a test where radiologists had to choose a model based on the focused regions extracted by the GRAD-CAM method showcased different outcomes. The radiologists' preference shifted towards models trained on the occluded images. These results suggest that while occluding confounding variables may degrade model performance, it enhances interpretability, providing more reliable insights into the reasoning behind predictions. The code to repeat our experiment is available on the following link: https://github.com/mikulicmateo/osteopenia .

6.
Sci Data ; 9(1): 222, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595759

RESUMO

Digital radiography is widely available and the standard modality in trauma imaging, often enabling to diagnose pediatric wrist fractures. However, image interpretation requires time-consuming specialized training. Due to astonishing progress in computer vision algorithms, automated fracture detection has become a topic of research interest. This paper presents the GRAZPEDWRI-DX dataset containing annotated pediatric trauma wrist radiographs of 6,091 patients, treated at the Department for Pediatric Surgery of the University Hospital Graz between 2008 and 2018. A total number of 10,643 studies (20,327 images) are made available, typically covering posteroanterior and lateral projections. The dataset is annotated with 74,459 image tags and features 67,771 labeled objects. We de-identified all radiographs and converted the DICOM pixel data to 16-Bit grayscale PNG images. The filenames and the accompanying text files provide basic patient information (age, sex). Several pediatric radiologists annotated dataset images by placing lines, bounding boxes, or polygons to mark pathologies like fractures or periosteal reactions. They also tagged general image characteristics. This dataset is publicly available to encourage computer vision research.


Assuntos
Algoritmos , Aprendizado de Máquina , Traumatismos do Punho , Criança , Humanos , Radiografia , Traumatismos do Punho/diagnóstico por imagem
7.
PLoS One ; 17(10): e0276503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264961

RESUMO

The use of artificial intelligence (AI) in image analysis is an intensively debated topic in the radiology community these days. AI computer vision algorithms typically rely on large-scale image databases, annotated by specialists. Developing and maintaining them is time-consuming, thus, the involvement of non-experts into the workflow of annotation should be considered. We assessed the learning rate of inexperienced evaluators regarding correct labeling of pediatric wrist fractures on digital radiographs. Students with and without a medical background labeled wrist fractures with bounding boxes in 7,000 radiographs over ten days. Pediatric radiologists regularly discussed their mistakes. We found F1 scores-as a measure for detection rate-to increase substantially under specialist feedback (mean 0.61±0.19 at day 1 to 0.97±0.02 at day 10, p<0.001), but not the Intersection over Union as a parameter for labeling precision (mean 0.27±0.29 at day 1 to 0.53±0.25 at day 10, p<0.001). The times needed to correct the students decreased significantly (mean 22.7±6.3 seconds per image at day 1 to 8.9±1.2 seconds at day 10, p<0.001) and were substantially lower as annotated by the radiologists alone. In conclusion our data showed, that the involvement of undergraduated students into annotation of pediatric wrist radiographs enables a substantial time saving for specialists, therefore, it should be considered.


Assuntos
Fraturas Ósseas , Radiologia , Humanos , Criança , Inteligência Artificial , Punho/diagnóstico por imagem , Radiologistas , Radiologia/métodos , Fraturas Ósseas/diagnóstico por imagem , Estudantes
8.
Front Pediatr ; 10: 1005099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589159

RESUMO

It is an indisputable dogma in extremity radiography to acquire x-ray studies in at least two complementary projections, which is also true for distal radius fractures in children. However, there is cautious hope that computer vision could enable breaking with this tradition in minor injuries, clinically lacking malalignment. We trained three different state-of-the-art convolutional neural networks (CNNs) on a dataset of 2,474 images: 1,237 images were posteroanterior (PA) pediatric wrist radiographs containing isolated distal radius torus fractures, and 1,237 images were normal controls without fractures. The task was to classify images into fractured and non-fractured. In total, 200 previously unseen images (100 per class) served as test set. CNN predictions reached area under the curves (AUCs) up to 98% [95% confidence interval (CI) 96.6%-99.5%], consistently exceeding human expert ratings (mean AUC 93.5%, 95% CI 89.9%-97.2%). Following training on larger data sets CNNs might be able to effectively rule out the presence of a distal radius fracture, enabling to consider foregoing the yet inevitable lateral projection in children. Built into the radiography workflow, such an algorithm could contribute to radiation hygiene and patient comfort.

9.
J Am Med Inform Assoc ; 28(12): 2687-2694, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34613393

RESUMO

Injured extremities commonly need to be immobilized by casts to allow proper healing. We propose a method to suppress cast superimpositions in pediatric wrist radiographs based on the cycle generative adversarial network (CycleGAN) model. We retrospectively reviewed unpaired pediatric wrist radiographs (n = 9672) and sampled them into 2 equal groups, with and without cast. The test subset consisted of 718 radiographs with cast. We evaluated different quadratic input sizes (256, 512, and 1024 pixels) for U-Net and ResNet-based CycleGAN architectures in cast suppression, quantitatively and qualitatively. The mean age was 11 ± 3 years in images containing cast (n = 4836), and 11 ± 4 years in castless samples (n = 4836). A total of 5956 X-rays had been done in males and 3716 in females. A U-Net 512 CycleGAN performed best (P ≤ .001). CycleGAN models successfully suppressed casts in pediatric wrist radiographs, allowing the development of a related software tool for radiology image viewers.


Assuntos
Processamento de Imagem Assistida por Computador , Adolescente , Criança , Feminino , Humanos , Masculino , Radiografia , Estudos Retrospectivos
10.
Comput Biol Med ; 132: 104300, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714842

RESUMO

BACKGROUND AND OBJECTIVES: Computer-aided diagnosis relies on machine learning algorithms that require filtered and preprocessed data as the input. Aligning the image in the desired direction is an additional manual step in post-processing, commonly overlooked due to workload issues. Several state-of-the-art approaches for fracture detection and disease-struck region segmentation benefit from correctly oriented images, thus requiring such preprocessing of X-ray images. Furthermore, it is desirable to have archived studies in a standardized format. Radiograph hanging protocols also differ from case to case, which means that images are not always aligned and oriented correctly. As a solution, the paper proposes XAOM, an X-ray Alignment and Orientation Method for images from 21 different body regions. METHODS: Typically, other methods are crafted for this purpose to suit a specific body region and form of usage. In contrast, the method proposed in this paper is comprehensive and easily tuned to align and orient X-ray images of any body region. XAOM consists of two stages. For the first stage of the method, aligning X-ray images, we experimented with the following approaches: Hough transform, Fast line detection algorithm, and Principal Component Analysis method. For the second stage, we have experimented with the adaptations of several well known convolutional neural network topologies for correctly predicting image orientation: LeNet5, AlexNet, VGG16, VGG19, and ResNet50. RESULTS: In the first stage, the PCA-based approach performed best. The average difference between the angle detected by the algorithm and the angle marked by the experts on the test set containing 200 pediatric X-ray images was 1.65∘, while the median value was 0.11∘. In the second stage, the VGG16-based network topology achieved the best accuracy of 0.993 on a test set containing 4,221 images. CONCLUSION: XAOM is highly accurate at aligning and orienting pediatric X-ray images of 21 common body regions according to a set standard. The proposed method is also robust and can be easily adjusted to the different alignment and rotation criteria. AVAILABILITY: The Python source code of the best performing implementation of XAOM is publicly available at https://github.com/fhrzic/XAOM.


Assuntos
Diagnóstico por Computador , Redes Neurais de Computação , Algoritmos , Criança , Computadores , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA