Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377466

RESUMO

BACKGROUND AND AIMS: Patients with alcohol-associated hepatitis (AH) have an altered fecal metabolome, including reduced microbiota-derived tryptophan metabolites, which function as ligands for aryl hydrocarbon receptor (AhR). The aim of this study was to assess serum AhR ligand activity in patients with AH. APPROACH AND RESULTS: The study included 74 controls without AUD, 97 patients with AUD, and 330 patients with AH from 2 different multicenter cohorts (InTeam: 134, AlcHepNet: 196). Serum AhR activity was evaluated using an AhR reporter assay with HepG2-Lucia cells incubated with serum for 24 hours. Serum AhR activity was significantly higher in patients with AH compared with both controls (1.59 vs. 0.96-fold change, p < 0.001) and patients with AUD (1.59 vs. 0.93, p < 0.001). In both AH cohorts, patients with AhR activity ≥ 2.09 had significantly lower cumulative survival rates at 30, 60, 90, and 180 days compared to those with AhR activity < 2.09. When serum AhR activity was used to further stratify patients with severe AH, the cumulative 30, 60, 90, and 180-day survival rates for patients with severe AH and the AhR activity ≥ 2.09 group were all significantly lower than those with an AhR activity < 2.09 group. CONCLUSIONS: Serum AhR activity was significantly higher in patients with AH compared with controls and individuals with AUD, and this increased activity was associated with higher mortality. Consequently, serum AhR activity holds potential as a prognostic marker.

2.
Hepatology ; 77(6): 2073-2083, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631002

RESUMO

BACKGROUND AND AIMS: The prevalence of alcohol use disorder (AUD) and metabolic dysfunction-associated fatty liver disease (MAFLD) are increasing worldwide, leading to the increasing likelihood of both etiologies contributing to a patient's liver disease. However, the effects of modest alcohol use in NAFLD are controversial and more studies are needed. We compared the intestinal viromes of patients with AUD and NAFLD in order to evaluate the effect of alcohol consumption on the intestinal viromes of NAFLD patients by extracting virus-like particles and performing metagenomic sequencing. APPROACH AND RESULTS: Viral nucleic acids were extracted from fecal samples and subjected to metagenomic sequencing. We demonstrate significant differences in the intestinal viromes of NAFLD and AUD patients, and that alcohol use in NAFLD patients reclassified to MAFLD accounted for significant differences in the intestinal viromes. The relative abundance of several Lactococcus phages was more similar between AUD patients and alcohol-consuming MAFLD patients than non-alcohol-consuming MAFLD patients and control subjects, and multivariate modeling using the most discriminating Lactococcus phages could better predict alcohol use in the MAFLD population than the alcohol-associated liver disease/NAFLD Index. Significant differences in the viral composition and diversity were also seen between MAFLD patients with low and moderate alcohol consumption compared with no alcohol consumption. CONCLUSIONS: The intestinal virome of MAFLD patients who consume low to moderate amounts of alcohol are significantly different from those who do not, and many features of the intestinal virome of alcohol-consuming MAFLD patients resemble that of AUD patients.


Assuntos
Alcoolismo , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Humanos , Viroma , Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782479

RESUMO

Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that hugin+ neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of hugin+ neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of hugin+ neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the hugin+ locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that hugin+ neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide-dependent fashion. We propose that hugin+ neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Sono/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Homeostase , Locomoção , Mutação , Privação do Sono , Vigília/fisiologia
4.
Gut ; 72(2): 325-337, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35705369

RESUMO

OBJECTIVE: Programmed cell death protein 1 (PD-1) checkpoint inhibition and adoptive cellular therapy have had limited success in patients with microsatellite stable colorectal cancer liver metastases (CRLM). We sought to evaluate the effect of interleukin 10 (IL-10) blockade on endogenous T cell and chimeric antigen receptor T (CAR-T) cell antitumour function in CRLM slice cultures. DESIGN: We created organotypic slice cultures from human CRLM (n=38 patients' tumours) and tested the antitumour effects of a neutralising antibody against IL-10 (αIL-10) both alone as treatment and in combination with exogenously administered carcinoembryonic antigen (CEA)-specific CAR-T cells. We evaluated slice cultures with single and multiplex immunohistochemistry, in situ hybridisation, single-cell RNA sequencing, reverse-phase protein arrays and time-lapse fluorescent microscopy. RESULTS: αIL-10 generated a 1.8-fold increase in T cell-mediated carcinoma cell death in human CRLM slice cultures. αIL-10 significantly increased proportions of CD8+ T cells without exhaustion transcription changes, and increased human leukocyte antigen - DR isotype (HLA-DR) expression of macrophages. The antitumour effects of αIL-10 were reversed by major histocompatibility complex class I or II (MHC-I or MHC-II) blockade, confirming the essential role of antigen presenting cells. Interrupting IL-10 signalling also rescued murine CAR-T cell proliferation and cytotoxicity from myeloid cell-mediated immunosuppression. In human CRLM slices, αIL-10 increased CEA-specific CAR-T cell activation and CAR-T cell-mediated cytotoxicity, with nearly 70% carcinoma cell apoptosis across multiple human tumours. Pretreatment with an IL-10 receptor blocking antibody also potentiated CAR-T function. CONCLUSION: Neutralising the effects of IL-10 in human CRLM has therapeutic potential as a stand-alone treatment and to augment the function of adoptively transferred CAR-T cells.


Assuntos
Carcinoma , Neoplasias Colorretais , Interleucina-10 , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Receptores de Interleucina-10 , Animais , Humanos , Camundongos , Antígeno Carcinoembrionário/imunologia , Carcinoma/imunologia , Carcinoma/secundário , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/patologia , Imunoterapia Adotiva , Interleucina-10/antagonistas & inibidores , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Interleucina-10/antagonistas & inibidores , Anticorpos Bloqueadores/imunologia
5.
J Gastroenterol Hepatol ; 38(8): 1205-1210, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37096652

RESUMO

The microorganisms inhabiting our gastrointestinal tract are critical for human health. Chronic heavy alcohol use can modulate the composition and function of the gut microbiota, thereby exacerbating end-organ damage via the gut-brain axis and the gut-liver axis. In this review, we summarize the bacterial, fungal, and viral gut microbial compositional changes associated with alcohol use and alcohol-associated liver disease and discuss the mechanisms of action by which gut dysbiosis reinforces alcohol use behavior and liver inflammation and injury. We also highlight important pre-clinical and clinical trials that target gut microbial-specific mechanisms for the treatment of alcohol use disorder and alcohol-associated liver disease.


Assuntos
Alcoolismo , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Humanos , Etanol , Fígado , Hepatopatias Alcoólicas/complicações , Alcoolismo/complicações , Disbiose/microbiologia
6.
Dig Dis Sci ; 68(7): 3059-3069, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807831

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are two of the most common etiologies of chronic liver disease worldwide. Changes in intestinal permeability and increased gut microbial translocation have been posited as important contributors to inflammation in both ALD and NAFLD. However, gut microbial translocation has not been compared between the two etiologies and can lead to better understanding of the differences in their pathogenesis to liver disease. METHODS: We compared serum and liver markers in the following five models of liver disease to understand the differences in the role of gut microbial translocation on liver disease progression caused by ethanol versus Western diet: (1) 8-week chronic ethanol feeding model. (2) 2-week chronic-plus-binge (National Institute on Alcohol Abuse and Alcoholism (NIAAA)) ethanol feeding model. (3) 2-week chronic-plus-binge (NIAAA) ethanol feeding model in microbiota-humanized gnotobiotic mice colonized with stool from patients with alcohol-associated hepatitis. (4) 20-week Western-diet-feeding model of NASH. (5) 20-week Western-diet-feeding model in microbiota-humanized gnotobiotic mice colonized with stool from NASH patients. RESULTS: Translocation of bacterial lipopolysaccharide to the peripheral circulation was seen in both ethanol-induced and diet-induced liver disease, but translocation of bacteria itself was restricted to only ethanol-induced liver disease. Moreover, the diet-induced steatohepatitis models developed more significant liver injury, inflammation, and fibrosis compared with ethanol-induced liver disease models, and this positively correlated with the level of lipopolysaccharide translocation. CONCLUSIONS: More significant liver injury, inflammation, and fibrosis are seen in diet-induced steatohepatitis, which positively correlates with translocation of bacterial components, but not intact bacteria.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Etanol/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/patologia , Translocação Bacteriana , Lipopolissacarídeos , Fígado/patologia , Hepatopatias Alcoólicas/complicações , Hepatite Alcoólica/complicações , Inflamação/patologia , Dieta , Bactérias , Fibrose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
7.
J Hepatol ; 75(6): 1465-1475, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34437908

RESUMO

Humans harbour a large quantity of microbes in the intestinal tract and have evolved symbiotic relationships with many of them. However, several specific bacterial pathobionts are associated with liver disease pathogenesis. Although bacteriophages (phages) and eukaryotic viruses (collectively known as "the virome") outnumber bacteria and fungi in the intestine, little is known about the intestinal virome in patients with liver disease. As natural predators of bacteria, phages can precisely edit the bacterial microbiota. Hence, there is interest in using them to target bacterial pathobionts in several diseases, including those of the liver. Herein, we will summarise changes in the faecal virome associated with fatty liver diseases and cirrhosis, and describe the therapeutic potential of phages and potential challenges to their clinical application.


Assuntos
Bacteriófagos/metabolismo , Trato Gastrointestinal/metabolismo , Hepatopatias/tratamento farmacológico , Viroma/fisiologia , Bacteriófagos/patogenicidade , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Hepatopatias/fisiopatologia , Viroma/efeitos dos fármacos , Viroma/imunologia
8.
Gut ; 68(10): 1884-1892, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30567742

RESUMO

OBJECTIVE: Non-invasive and accurate diagnostic tests for the screening of disease severity in non-alcoholic fatty liver disease (NAFLD) remain a major unmet need. Therefore, we aimed to examine if a combination of serum metabolites can accurately predict the presence of advanced fibrosis. DESIGN: This is a cross-sectional analysis of a prospective derivation cohort including 156 well-characterised patients with biopsy-proven NAFLD and two validation cohorts, including (1) 142 patients assessed using MRI elastography (MRE) and(2) 59 patients with biopsy-proven NAFLD with untargeted serum metabolome profiling. RESULTS: In the derivation cohort, 23 participants (15%) had advanced fibrosis and 32 of 652 analysed metabolites were significantly associated with advanced fibrosis after false-discovery rate adjustment. Among the top 10 metabolites, 8 lipids (5alpha-androstan-3beta monosulfate, pregnanediol-3-glucuronide, androsterone sulfate, epiandrosterone sulfate, palmitoleate, dehydroisoandrosterone sulfate, 5alpha-androstan-3beta disulfate, glycocholate), one amino acid (taurine) and one carbohydrate (fucose) were identified. The combined area under the receiver operating characteristic curve (AUROC) of the top 10 metabolite panel was higher than FIB--4 and NAFLD Fibrosis Score (NFS) for the detection of advanced fibrosis: 0.94 (95% CI 0.897 to 0.982) versus 0.78 (95% CI0.674 to 0.891), p=0.002 and versus 0.84 (95% CI 0.724 to 0.929), p=0.017, respectively. The AUROC of the top 10 metabolite panel remained excellent in the independent validation cohorts assessed by MRE or liver biopsy: c-statistic of 0.94 and 0.84, respectively. CONCLUSION: A combination of 10 serum metabolites demonstrated excellent discriminatory ability for the detection of advanced fibrosis in an derivation and two independent validation cohorts with greater diagnostic accuracy than the FIB-4-index and NFS. This proof-of-concept study demonstrates that a non-invasive blood-based diagnostic test can provide excellent performance characteristics for the detection of advanced fibrosis.


Assuntos
Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Cirrose Hepática/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Biomarcadores/sangue , Biópsia , Estudos Transversais , Técnicas de Imagem por Elasticidade , Feminino , Seguimentos , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Prognóstico , Estudos Prospectivos , Índice de Gravidade de Doença
9.
Clin Gastroenterol Hepatol ; 17(4): 630-637.e8, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29908362

RESUMO

BACKGROUND & AIMS: Magnetic resonance elastography (MRE) and transient elastography (TE) are noninvasive techniques for detection of liver fibrosis. Single-center studies have compared the diagnostic performance of MRE vs TE in patients with nonalcoholic fatty liver disease (NAFLD). We conducted a pooled analysis of individual participant data from published studies to compare the diagnostic performance of MRE vs TE for staging of liver fibrosis in patients with NAFLD, using liver biopsy as reference. METHODS: We performed a systematic search of publication databases, from 2005 through 2017. We identified 3 studies of adults with NAFLD who were assessed by MRE, TE, and liver biopsy. In a pooled analysis, we calculated the cluster-adjusted area under the curve (AUROC) of MRE and TE for the detection of each stage of fibrosis. AUROC comparisons between MRE and TE were performed using the Delong test. RESULTS: Our pooled analysis included 230 participants with biopsy-proven NAFLD with mean age of 52.2±13.9 years and a body mass index of 31.9±7.5 kg/m2. The proportions of patients with fibrosis of stages 0, 1, 2, 3, and 4 were: 31.7%, 27.8%, 15.7%, 13.9%, and 10.9%, respectively. The AUROC of TE vs MRE for detection of fibrosis stages ≥1 was 0.82 (95% CI, 0.76-0.88) vs 0.87 (95% CI, 0.82-0.91) (P=.04); for stage≥ 2 was 0.87 (95% CI, 0.82-0.91) vs 0.92 (95% CI, 0.88-0.96) (P=.03); for stage ≥3 was 0.84 (95% CI, 0.78-0.90) vs 0.93 (95% CI, 0.89-0.96) (P=.001); for stage ≥ 4 was 0.84 (95% CI, 0.73-0.94) vs 0.94 (95% CI, 0.89-0.99) (P=.005). CONCLUSION: In a pooled analysis of data from individual participants with biopsy-proven NAFLD, we found MRE to have a statistically significantly higher diagnostic accuracy than TE in detection of each stage of fibrosis. MRE and TE each have roles in detection of fibrosis in patients with NAFLD, depending upon the level of accuracy desired.


Assuntos
Testes Diagnósticos de Rotina/métodos , Técnicas de Imagem por Elasticidade/métodos , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Curva ROC
10.
Hepatology ; 68(3): 918-932, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29572891

RESUMO

Previous studies have shown that gut-microbiome is associated with nonalcoholic fatty liver disease (NAFLD). We aimed to examine if serum metabolites, especially those derived from the gut-microbiome, have a shared gene-effect with hepatic steatosis and fibrosis. This is a cross-sectional analysis of a prospective discovery cohort including 156 well-characterized twins and families with untargeted metabolome profiling assessment. Hepatic steatosis was assessed using magnetic-resonance-imaging proton-density-fat-fraction (MRI-PDFF) and fibrosis using MR-elastography (MRE). A twin additive genetics and unique environment effects (AE) model was used to estimate the shared gene-effect between metabolites and hepatic steatosis and fibrosis. The findings were validated in an independent prospective validation cohort of 156 participants with biopsy-proven NAFLD including shotgun metagenomics sequencing assessment in a subgroup of the cohort. In the discovery cohort, 56 metabolites including 6 microbial metabolites had a significant shared gene-effect with both hepatic steatosis and fibrosis after adjustment for age, sex and ethnicity. In the validation cohort, 6 metabolites were associated with advanced fibrosis. Among them, only one microbial metabolite, 3-(4-hydroxyphenyl)lactate, remained consistent and statistically significantly associated with liver fibrosis in the discovery and validation cohort (fold-change of higher-MRE versus lower-MRE: 1.78, P < 0.001 and of advanced versus no advanced fibrosis: 1.26, P = 0.037, respectively). The share genetic determination of 3-(4-hydroxyphenyl)lactate with hepatic steatosis was RG :0.57,95%CI:0.27-0.80, P < 0.001 and with fibrosis was RG :0.54,95%CI:0.036-1, P = 0.036. Pathway reconstruction linked 3-(4-hydroxyphenyl)lactate to several human gut-microbiome species. In the validation cohort, 3-(4-hydroxyphenyl)lactate was significantly correlated with the abundance of several gut-microbiome species, belonging only to Firmicutes, Bacteroidetes and Proteobacteria phyla, previously reported as associated with advanced fibrosis. Conclusion: This proof of concept study provides evidence of a link between the gut-microbiome and 3-(4-hydroxyphenyl)lactate that shares gene-effect with hepatic steatosis and fibrosis. (Hepatology 2018).


Assuntos
Microbioma Gastrointestinal , Cirrose Hepática/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Fenilpropionatos/sangue , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Cirrose Hepática/microbiologia , Masculino , Metformina , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/microbiologia , Estudo de Prova de Conceito
11.
Am J Hum Genet ; 93(6): 1108-17, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24268659

RESUMO

Nemaline myopathy (NM) is a rare congenital muscle disorder primarily affecting skeletal muscles that results in neonatal death in severe cases as a result of associated respiratory insufficiency. NM is thought to be a disease of sarcomeric thin filaments as six of eight known genes whose mutation can cause NM encode components of that structure, however, recent discoveries of mutations in non-thin filament genes has called this model in question. We performed whole-exome sequencing and have identified recessive small deletions and missense changes in the Kelch-like family member 41 gene (KLHL41) in four individuals from unrelated NM families. Sanger sequencing of 116 unrelated individuals with NM identified compound heterozygous changes in KLHL41 in a fifth family. Mutations in KLHL41 showed a clear phenotype-genotype correlation: Frameshift mutations resulted in severe phenotypes with neonatal death, whereas missense changes resulted in impaired motor function with survival into late childhood and/or early adulthood. Functional studies in zebrafish showed that loss of Klhl41 results in highly diminished motor function and myofibrillar disorganization, with nemaline body formation, the pathological hallmark of NM. These studies expand the genetic heterogeneity of NM and implicate a critical role of BTB-Kelch family members in maintenance of sarcomeric integrity in NM.


Assuntos
Mutação , Miofibrilas/metabolismo , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Transdução de Sinais , Ubiquitinação , Adolescente , Animais , Criança , Pré-Escolar , Proteínas do Citoesqueleto , Evolução Fatal , Feminino , Expressão Gênica , Ordem dos Genes , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Miopatias da Nemalina/diagnóstico , Conformação Proteica , Proteínas/química , Peixe-Zebra
12.
Hum Mol Genet ; 22(8): 1525-38, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23307925

RESUMO

No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM.


Assuntos
Terapia de Reposição de Enzimas , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Modelos Animais de Doenças , Fadiga/metabolismo , Fadiga/fisiopatologia , Feminino , Humanos , Camundongos , Debilidade Muscular/genética , Debilidade Muscular/terapia , Músculo Esquelético/fisiopatologia , Músculos/enzimologia , Músculos/metabolismo , Músculos/patologia , Miopatias Congênitas Estruturais/enzimologia , Miopatias Congênitas Estruturais/genética , Proteínas Tirosina Fosfatases não Receptoras/biossíntese , Proteínas Tirosina Fosfatases não Receptoras/deficiência
13.
Aging Cell ; 23(4): e14082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204362

RESUMO

Circadian cycles of sleep:wake and gene expression change with age in all organisms examined. Metabolism is also under robust circadian regulation, but little is known about how metabolic cycles change with age and whether these contribute to the regulation of behavioral cycles. To address this gap, we compared cycling of metabolites in young and old Drosophila and found major age-related variations. A significant model separated the young metabolic profiles by circadian timepoint, but could not be defined for the old metabolic profiles due to the greater variation in this dataset. Of the 159 metabolites measured in fly heads, we found 17 that cycle by JTK analysis in young flies and 17 in aged. Only four metabolites overlapped in the two groups, suggesting that cycling metabolites are distinct in young and old animals. Among our top cyclers exclusive to young flies were components of the pentose phosphate pathway (PPP). As the PPP is important for buffering reactive oxygen species, and overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key component of the PPP, was previously shown to extend lifespan in Drosophila, we asked if this manipulation also affects sleep:wake cycles. We found that overexpression in circadian clock neurons decreases sleep in association with an increase in cellular calcium and mitochondrial oxidation, suggesting that altering PPP activity affects neuronal activity. Our findings elucidate the importance of metabolic regulation in maintaining patterns of neural activity, and thereby sleep:wake cycles.


Assuntos
Relógios Circadianos , Drosophila , Animais , Drosophila/metabolismo , Sono , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato , Ritmo Circadiano
14.
Am J Pathol ; 181(3): 961-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22841819

RESUMO

X-linked myotubular myopathy is a severe congenital myopathy caused by deficiency of the lipid phosphatase, myotubularin. Recent studies of human tissue and animal models have discovered structural and physiological abnormalities in myotubularin-deficient muscle, but the impact of myotubularin deficiency on myogenic stem cells within muscles is unclear. In the present study, we evaluated the viability, proliferative capacity, and in vivo engraftment of myogenic cells obtained from severely symptomatic (Mtm1δ4) myotubularin-deficient mice. Mtm1δ4 muscle contains fewer myogenic cells than wild-type (WT) littermates, and the number of myogenic cells decreases with age. The behavior of Mtm1δ4 myoblasts is also abnormal, because they engraft poorly into C57BL/6/Rag1null/mdx5cv mice and display decreased proliferation and increased apoptosis compared with WT myoblasts. Evaluation of Mtm1δ4 animals at 21 and 42 days of life detected fewer satellite cells in Mtm1δ4 muscle compared with WT littermates, and the decrease in satellite cells correlated with progression of disease. In addition, analysis of WT and Mtm1δ4 regeneration after injury detected similar abnormalities of satellite cell function, with fewer satellite cells, fewer dividing cells, and increased apoptotic cells in Mtm1δ4 muscle. These studies demonstrate specific abnormalities in myogenic cell number and behavior that may relate to the progression of disease in myotubularin deficiency, and may also be used to develop in vitro assays by which novel treatment strategies can be assessed.


Assuntos
Apoptose , Mioblastos/patologia , Mioblastos/transplante , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Animais , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Mioblastos/metabolismo , Fator de Transcrição PAX7/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia
15.
Dev Dyn ; 241(10): 1545-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22911626

RESUMO

BACKGROUND: We investigated the roles of p120 catenin, Cdc42, Rac1, and RhoA GTPases in regulating migration of presomitic mesoderm cells in zebrafish embryos. p120 catenin has dual roles: It binds the intracellular and juxtamembrane region of cadherins to stabilize cadherin-mediated adhesion with the aid of RhoA GTPase, and it activates Cdc42 GTPase and Rac1 GTPase in the cytosol to initiate cell motility. RESULTS: During gastrulation of zebrafish embryos, knockdown of the synthesis of zygotic p120 catenin δ1 mRNAs with a splice-site morpholino caused lateral widening and anterior-posterior shortening of the presomitic mesoderm and somites and a shortened anterior-posterior axis. These phenotypes indicate a cell-migration effect. Co-injection of low amounts of wild-type Cdc42 or wild-type Rac1 or dominant-negative RhoA mRNAs, but not constitutively-active Cdc42 mRNA, rescued these p120 catenin δ1-depleted embryos. CONCLUSIONS: These downstream small GTPases require appropriate spatiotemporal stimulation or cycling of GTP to guide mesodermal cell migration. A delicate balance of Rho GTPases and p120 catenin underlies normal development.


Assuntos
Movimento Celular/fisiologia , Gastrulação/fisiologia , Mesoderma/metabolismo , Peixe-Zebra/embriologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Western Blotting , Cateninas/genética , Cateninas/metabolismo , Clonagem Molecular , Técnicas de Silenciamento de Genes , Guanosina Trifosfato/metabolismo , Hibridização In Situ , Mesoderma/citologia , Mesoderma/enzimologia , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , delta Catenina
16.
Nat Rev Microbiol ; 21(11): 719-733, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37316582

RESUMO

The trillions of microorganisms in the human intestine are important regulators of health, and disruptions in the gut microbial communities can cause disease. The gut, liver and immune system have a symbiotic relationship with these microorganisms. Environmental factors, such as high-fat diets and alcohol consumption, can disrupt and alter microbial communities. This dysbiosis can lead to dysfunction of the intestinal barrier, translocation of microbial components to the liver and development or progression of liver disease. Changes in metabolites produced by gut microorganisms can also contribute to liver disease. In this Review, we discuss the importance of the gut microbiota in maintenance of health and the alterations in microbial mediators that contribute to liver disease. We present strategies for modulation of the intestinal microbiota and/or their metabolites as potential treatments for liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatias , Microbiota , Humanos , Sistema Imunitário , Disbiose
17.
Curr Biol ; 33(8): 1613-1623.e5, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36965479

RESUMO

Chronic sleep loss profoundly impacts metabolic health and shortens lifespan, but studies of the mechanisms involved have focused largely on acute sleep deprivation.1,2 To identify metabolic consequences of chronically reduced sleep, we conducted unbiased metabolomics on heads of three adult Drosophila short-sleeping mutants with very different mechanisms of sleep loss: fumin (fmn), redeye (rye), and sleepless (sss).3,4,5,6,7 Common features included elevated ornithine and polyamines, with lipid, acyl-carnitine, and TCA cycle changes suggesting mitochondrial dysfunction. Studies of excretion demonstrate inefficient nitrogen elimination in adult sleep mutants, likely contributing to their polyamine accumulation. Increasing levels of polyamines, particularly putrescine, promote sleep in control flies but poison sleep mutants. This parallels the broadly enhanced toxicity of high dietary nitrogen load from protein in chronically sleep-restricted Drosophila, including both sleep mutants and flies with hyper-activated wake-promoting neurons. Together, our results implicate nitrogen stress as a novel mechanism linking chronic sleep loss to adverse health outcomes-and perhaps for linking food and sleep homeostasis at the cellular level in healthy organisms.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sono/fisiologia , Drosophila/metabolismo , Poliaminas
18.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37808824

RESUMO

Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25-30) and old (age 70-76) individuals and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at driving robust ~24h oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera drive cycling of different genes. While genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions, genes identified by STRING and IPA analyses as associated with oxidative phosphorylation and Alzheimer's Disease lose rhythmicity in the aged condition. Also, the expression of cycling genes associated with cholesterol biosynthesis increases in the cells entrained with old serum. We did not observe a global difference in the distribution of phase between groups, but find that peak expression of several clock controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lags in the cells synchronized with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect peripheral circadian rhythms in cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.

19.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221017

RESUMO

mTORC1 is the key rheostat controlling the cellular metabolic state. Of the various inputs to mTORC1, the most potent effector of intracellular nutrient status is amino acid supply. Despite an established role for MAP4K3 in promoting mTORC1 activation in the presence of amino acids, the signaling pathway by which MAP4K3 controls mTORC1 activation remains unknown. Here, we examined the process of MAP4K3 regulation of mTORC1 and found that MAP4K3 represses the LKB1-AMPK pathway to achieve robust mTORC1 activation. When we sought the regulatory link between MAP4K3 and LKB1 inhibition, we discovered that MAP4K3 physically interacts with the master nutrient regulatory factor sirtuin-1 (SIRT1) and phosphorylates SIRT1 to repress LKB1 activation. Our results reveal the existence of a novel signaling pathway linking amino acid satiety with MAP4K3-dependent suppression of SIRT1 to inactivate the repressive LKB1-AMPK pathway and thereby potently activate the mTORC1 complex to dictate the metabolic disposition of the cell.


Assuntos
Proteínas Quinases Ativadas por AMP , Sirtuína 1 , Transdução de Sinais , Aminoácidos , Alvo Mecanístico do Complexo 1 de Rapamicina
20.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873373

RESUMO

Sleep loss has been associated with increased seizure risk since antiquity. Despite this observation standing the test of time, how poor sleep drives susceptibility to seizures remains unclear. To identify underlying mechanisms, we restricted sleep in Drosophila epilepsy models and developed a method to identify spontaneous seizures using quantitative video tracking. Here we find that sleep loss exacerbates seizures but only when flies experience increased sleep need, or sleepiness , and not necessarily with reduced sleep quantity. This is supported by the paradoxical finding that acute activation of sleep-promoting circuits worsens seizures, because it increases sleep need without changing sleep amount. Sleep-promoting circuits become hyperactive after sleep loss and are associated with increased whole-brain activity. During sleep restriction, optogenetic inhibition of sleep-promoting circuits to reduce sleepiness protects against seizures. Downregulation of the 5HT1A serotonin receptor in sleep-promoting cells mediates the effect of sleep need on seizures, and we identify an FDA-approved 5HT1A agonist to mitigate seizures. Our findings demonstrate that while homeostatic sleep is needed to recoup lost sleep, it comes at the cost of increasing seizure susceptibility. We provide an unexpected perspective on interactions between sleep and seizures, and surprisingly implicate sleep- promoting circuits as a therapeutic target for seizure control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA