Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Equity Health ; 23(1): 6, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200494

RESUMO

BACKGROUND: The existing evidence base indicates increased interest in knowledge translation (KT), or, the dissemination of research to ensure uptake and impact. Given this definition, this study aimed to review existing scholarship on knowledge translation (KT) of health research to people living with disabilities (PLWD), and assess the current state of accessibility of health knowledge for people living with disabilities. METHODS: Given existing heterogeneity in literature as well as a number of varying definitions for both disability and knowledge translation, a reflexive, three-phase approach was utilized to improve methodological soundness. Phase I recognizes that existing review-style studies have been conducted on disability-KT. An existing systematic review on KT specific to the field of rehabilitation and physical medicine was analyzed to assess potential best practices towards inclusivity and accessibility for people living with disability. Phase II used the Center on Knowledge Translation for Disability and Rehabilitation Research (KTDRR) database as an information-source with high-specificity to disability-health KT. Phase III sought to rapidly assess the current landscape of systematic reviews relevant to disability-health KT, with four systematic reviews meeting the inclusion criteria across Cochrane, Psycinfo, CINAHL, PubMed, Web of Science, and EMBASE. RESULTS: The current landscape of disability-health KT is primarily targeted at health professionals who serve PLWD. PLWD are included in KT, mostly as key informants, or as study participants in KT-studies designed as health interventions. Multiple systematic reviews on disability-health KT exist, presenting vastly different foci which prevent assessment of best practices. CONCLUSIONS: KT efforts are abundant and can be seen across health research related to disabilities, generating considerable literature and systematic reviews. With regards to meeting the public health objective of equalizing and enhancing access to health knowledge, future knowledge translation efforts intending to provide PLWD with up-to-date health research can be of significant value.


Assuntos
Pessoas com Deficiência , Humanos , Revisões Sistemáticas como Assunto , Bases de Dados Factuais , Pessoal de Saúde , Saúde Pública
2.
Phytopathology ; 114(1): 282-293, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37366568

RESUMO

Hibiscus green spot virus 2 (HGSV-2), a member of the genus Higrevirus (family Kitaviridae), is a positive-stranded RNA virus associated with leprosis-like symptoms in citrus and green spots on leaves in hibiscus. HGSV-2 has only been reported in Hawaii, and while it is speculated that mites in the genus Brevipalpus might be responsible for its transmission, proper transmission assays have yet to be conducted. This study characterizes additional citrus and hibiscus isolates of HGSV-2 collected from two Hawaiian Islands. We constructed an infectious cDNA clone from a hibiscus isolate of HGSV-2 collected on Oahu and demonstrated its ability to infect several experimental hosts, including Phaseolus vulgaris, Nicotiana tabacum, and N. benthamiana, as well as natural hosts, Citrus reticulata and Hibiscus arnottianus. Bacilliform virions with varied sizes of 33 to 120 nm (length) and 14 to 70 nm (diameter) were observed in partially purified preparations obtained from agroinoculated leaves. Virus progeny from the infectious cDNA clone was found to be infectious after mechanical transmission to N. benthamiana and to cause local lesions. Finally, an isoline colony of the mite Brevipalpus azores had vector competence to transmit a citrus isolate of HGSV-2 collected from Maui to citrus and hibiscus plants, demonstrating the mite-borne nature of HGSV-2. The infectious cDNA clone developed in this study is the first reverse-genetics system for a kitavirid and will be fundamental to better characterize basic biology of HGSV-2 and its interactions with host plants and mite vectors.


Assuntos
Citrus , Hibiscus , Ácaros , Vírus de Plantas , Vírus de RNA , Animais , Hibiscus/genética , DNA Complementar/genética , Genética Reversa , Vírus de Plantas/genética , Doenças das Plantas , Vírus de RNA/genética , Ácaros/genética
3.
Arch Virol ; 168(2): 40, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609629

RESUMO

High-throughput sequencing was used to analyze Hibiscus rosa-sinensis (family Malvaceae) plants with virus-like symptoms in Hawaii. Bioinformatic and phylogenetic analysis revealed the presence of two tobamoviruses, hibiscus latent Fort Pierce virus (HLFPV) and a new tobamovirus with the proposed name "hibiscus latent Hawaii virus" (HLHV). This is the first report of the complete sequence, genome organization, and phylogenetic characterization of a tobamovirus infecting hibiscus in Hawaii. RT-PCR with virus-specific primers and Sanger sequencing further confirmed the presence of these viruses. Inoculation experiments showed that HLFPV could be mechanically transmitted to Nicotiana benthamiana and N. tabacum, while HLHV could only be mechanically transmitted to N. benthamiana.


Assuntos
Hibiscus , Rosa , Tobamovirus , Tobamovirus/genética , Filogenia , Havaí , Genoma Viral
4.
BMC Infect Dis ; 23(1): 407, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316806

RESUMO

Cryptococcal meningoencephalitis can occur in both previously healthy and immunocompromised hosts. Here, we describe a 55 year-old HIV-negative male with no known prior medical problems, who presented with three months of worsening headaches, confusion, and memory changes without fever. Magnetic resonance imaging of the brain demonstrated bilateral enlargement/enhancement of the choroid plexi, with hydrocephalus, temporal and occipital horn entrapments, as well as marked periventricular transependymal cerebrospinal fluid (CSF) seepage. CSF analysis yielded a lymphocytic pleocytosis and cryptococcal antigen titer of 1:160 but sterile fungal cultures. Despite standard antifungal therapy and CSF drainage, the patient had worsening confusion and persistently elevated intracranial pressures. External ventricular drainage led to improved mental status but only with valve settings at negative values. Ventriculoperitoneal shunt placement could thus not be considered due to a requirement for drainage into the positive pressure venous system. Due to this persistent CSF inflammation and cerebral circulation obstruction, the patient required transfer to the National Institute of Health. He was treated for cryptococcal post-infectious inflammatory response syndrome with pulse-taper corticosteroid therapy, with resultant reductions in CSF pressures along with decreased protein and obstructive material, allowing successful shunt placement. After tapering of corticosteroids, the patient recovered without sequelae. This case highlights (1) the necessity to consider cryptococcal meningitis as a rare cause of neurological deterioration in the absence of fever even in apparently immunocompetent individuals and (2) the potential for obstructive phenomena from inflammatory sequelae and the prompt response to corticosteroid therapy.


Assuntos
Cryptococcus , Hidrocefalia , Hipertensão Intracraniana , Meningite Criptocócica , Humanos , Masculino , Pessoa de Meia-Idade , Meningite Criptocócica/tratamento farmacológico , Pressão Intracraniana , Hipertensão Intracraniana/etiologia , Hidrocefalia/cirurgia
5.
Plant Dis ; 107(10): 3106-3112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37102725

RESUMO

Sunn hemp (Crotalaria juncea L.) cultivar Tropic Sun plants, stunted and displaying mottle and mosaic symptoms on foliage, were observed at a seed farm in Maui County, Hawaii. Lateral flow assays indicated the presence of either tobacco mosaic virus or a serologically related virus. High-throughput sequencing results coupled with real-time PCR experiments recovered the 6,455-nucleotide genome of a virus with an organization typical of tobamoviruses. Nucleotide and amino acid sequence comparisons and phylogenetic analyses indicated that this virus was most closely related to sunn-hemp mosaic virus but represents a distinct species. Sunn-hemp mottle virus (SHMoV) is being proposed as the common name of this virus. Transmission electron microscopy of virus extracts purified from symptomatic leaves revealed rod-shaped particles approximately 320 by 22 nm in size. In inoculation studies, the experimental host range of SHMoV appeared limited to members of the plant families Fabaceae and Solanaceae. Greenhouse experiments demonstrated plant-to-plant transmission of SHMoV that increased with ambient wind speed. Seeds from SHMoV-infected Tropic Sun were collected and were either surface disinfested or directly planted. A total of 924 seedlings germinated; 2 were positive for the virus, resulting in a seed transmission rate of 0.2%. Both infected plants came from the surface disinfestation treatment, suggesting that the virus might be unaffected by the treatment.


Assuntos
Cannabis , Crotalaria , Tobamovirus , Crotalaria/química , Havaí , Tobamovirus/genética , Filogenia , Nucleotídeos
6.
Plant Dis ; 107(4): 1022-1026, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36167515

RESUMO

Malabar spinach plants (Basella alba, Basellaceae) with leaves exhibiting symptoms of mosaic, rugosity, and malformation were found in a community garden on Oahu, HI in 2018. Preliminary studies using enzyme-linked immunosorbent assay and reverse-transcription (RT)-PCR identified Basella rugose mosaic virus (BaRMV) in symptomatic plants. However, nucleotide sequence analysis of RT-PCR amplicons indicated that additional potyviruses were also present in the symptomatic Malabar spinach. High-throughput sequencing (HTS) analysis was conducted on ribosomal RNA-depleted composite RNA samples of potyvirus-positive plants from three locations. Assembled contigs shared sequences similar to BaRMV, chilli veinal mottle virus (ChiVMV), Alternanthera mosaic virus (AltMV), Basella alba endornavirus (BaEV), broad bean wilt virus 2 (BBWV2), and Iresine viroid 1. Virus- and viroid-specific primers were designed based on HTS sequencing results and used in RT-PCR and Sanger sequencing to confirm the presence of these viruses and the viroid. We tested 63 additional samples from six community gardens for a survey of viruses in Malabar spinach and found that 21 of them were positive for BaRMV, 57 for ChiVMV, 21 for AltMV, 19 for BaEV, and 14 for BBWV2. This is the first characterization of the virome from B. alba.


Assuntos
Potyvirus , Viroides , Havaí , Potyvirus/genética , Primers do DNA , Ensaio de Imunoadsorção Enzimática
7.
Arch Virol ; 167(12): 2801-2804, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269415

RESUMO

The complete genome sequence of pineapple secovirus B (PSV-B), a new virus infecting pineapple (Ananas comosus) on the island of Oahu, Hawaii, was determined by high-throughput sequencing (HTS). The genome comprises two RNAs that are 5,956 and 3,808 nt long, excluding the 3'-end poly-A tails, both coding for a single large polyprotein. The RNA1 polyprotein contains five conserved domains associated with replication, while the RNA2 polyprotein is cleaved into the movement protein and coat protein. PSV-B is representative of a new species in the subgenus Cholivirus (genus Sadwavirus; family Secoviridae), as the level of amino acid sequence identity to recognized members of this subgenus in the Pro-Pol and coat protein regions is below currently valid species demarcation thresholds.


Assuntos
Ananas , Secoviridae , RNA Viral/genética , RNA Viral/metabolismo , Filogenia , Secoviridae/genética , Genoma Viral , Poliproteínas/genética
8.
Virus Genes ; 58(4): 367-371, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35426563

RESUMO

The complete genome sequences of two carlaviruses were determined by high-throughput sequencing of RNA extracted from ringspot and mosaic, disease symptoms on leaves of spider lily plants (Crinum asiaticum, family Amaryllidaceae) growing as landscape plants in Hawaii. One, named Nerine latent virus (NeLV)-Hawaii with a genome of 8281 nucleotide exhibited the highest nucleotide identity and amino acid similarity of 95.5% and 96.0%, respectively, to the genome sequence of an isolate of NeLV from Narcissus sp. in Australia (JQ395044). The second, named Hippeastrum latent virus (HiLV)-Hawaii with a genome of 8497 nucleotides exhibited the highest nucleotide identity and amino acid similarity, 84.3% and 88.7%, respectively, to the sequence of a previously uncharacterized HiLV isolate from a potted flowering plant, Amaryllis (Hippeastrum hybridum Hort) in Taiwan (DQ098905). The amino acid sequence similarities of replicase (Rep) and coat protein (CP) between HiLV-Hawaii and NeLV-Hawaii were 44.8% and 38.4%, respectively. Results of viral protein Rep and CP amino acid sequence comparisons from various carlaviruses provide evidence that HiLV and NeLV, previously classified as synonymous viruses are in fact unique viruses. This is the first report for the complete sequence, organization, and phylogenetic characterization of HiLV and the first detection of HiLV both in C. asiaticum and in the USA.


Assuntos
Amaryllidaceae , Carlavirus , Amaryllidaceae/genética , Aminoácidos/genética , Carlavirus/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nucleotídeos , Filogenia , Doenças das Plantas , RNA Viral/genética
9.
Food Microbiol ; 106: 104052, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690451

RESUMO

Traditional culture-based detection methods for Campylobacteri jejuni, a leading cause of human bacterial gastroenteritis worldwide, are time-consuming, cumbersome, and lacking in reliability. While polymerase chain reaction (PCR) has been frequently used for pathogen testing, it might generate false-negative results due to inadequate sensitivity. This study was the first to explore novel single-tube nested PCR (STN-PCR) to detect pathogens in food. Two pairs of nested PCR primers were designed based on the hippuricase gene of C. jejuni. The annealing temperatures and concentrations of nested primers were optimized to ensure the sequential use of outer and inner pairs of primers during amplification. Efficacy of the developed STN-PCR assay was compared with standard culture-based methods and conventional PCR in artificially contaminated ground chicken homogenate. Limit of detection of the STN-PCR assay was determined to be 3.6 × 101 CFU/ml of C. jejuni in the homogenate without enrichment, which was 100 times lower than conventional PCR. Moreover, 0.1 CFU/g of C. jejuni in ground chicken homogenate was identified by STN-real time PCR (rtPCR) after 24 h of enrichment, while a 48-h enrichment was required for culture-based methods and conventional rtPCR. This developed assay provides a powerful tool for rapid, highly specific, and ultra-sensitive detection of C. jejuni and may potentially be used to identify contaminated chicken and other foods.


Assuntos
Campylobacter jejuni , Animais , Campylobacter jejuni/genética , Galinhas/microbiologia , Primers do DNA/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Plant Dis ; 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253490

RESUMO

In Hawaii, passionfruit (Passiflora edulis; Passifloraceae) is grown primarily in residential properties and community gardens (CG). In 2019, passionfruit plants displaying chlorotic spots on young leaves, and green spots in senescing leaves were observed at two CG in Honolulu. Symptoms resembled those of passionfruit green spot virus (PfGSV) infection in Passiflora spp. (Ramos-González et al. 2020) and of the hibiscus strain of citrus leprosis virus C2 (CiLV-C2H) infection in hibiscus in Hawaii (Melzer et al. 2013). Both viruses belong to the genus Cilevirus, family Kitaviridae. Total RNA was extracted from two sample pools comprised of 40 symptomatic leaves collected from both the CG following a CTAB-based procedure (Li et al. 2008). To identify the virus associated with the P. edulis infection, reverse transcription (RT)-polymerase chain reaction (PCR) was performed using CiLV-C2 (Olmedo-Velarde et al. 2021) and PfGSV specific primers (Ramos-González et al. 2020). RT-PCR assay amplified the CiLV-C2 amplicon but failed to produce the PfGSV amplicon from infected leaves. Amplicon sequencing followed by a BLASTn search showed the nucleotide sequence had >99% identity with the CiLV-C2H-RNA1 (KC626783). A ribo-depleted RNA library created using the TruSeq Stranded Total RNA Library Prep kit (Illumina) underwent high throughput sequencing (HTS) on a NextSeq550 Illumina platform (2x75 cycles). The 6.5 million raw reads obtained were trimmed, filtered, and de novo assembled using Metaviral SPAdes v. 3.15.02 (Antipov et al. 2020). The resulting contigs were searched against an in-house database generated from GenBank virus and viroid sequences using BLASTn. This identified 12 and 3 contigs corresponding to CiLV-C2H and watermelon mosaic virus, respectively, with the latter being previously reported in passionfruit (Watanabe et al. 2016). RNA1 contigs covered 80.17% of the CiLV-C2H genome, whereas RNA2 contigs covered 94.5% with an average coverage depth of 31.660 and 57.121, respectively. To obtain the near complete genome of CiLV-C2H, gaps from the assembled HTS data were filled by overlapping RT-PCR followed by Sanger sequencing. RNA1 (8,536 nt, Acc. No. MW413437) and RNA2 (4,878 nt, MW413438) genome sequences shared 99.2% and 97.0% identity with CiLV-C2H-RNA1 (KC626783) and -RNA2 (KC626784). To further confirm the presence of CiLV-C2H in symptomatic P. edulis plants, 40 symptomatic leaf samples were individually tested by RT-PCR, and 30 samples were positive. Brevipalpus mites collected from CiLV-C2H-positive P. edulis leaves were transferred to common bean (Phaseolus vulgaris) seedlings (Garita et al. 2013). At 15-30 days post-transfer, RNA extracted from lesions observed in recipient plants tested positive for CiLV-C2H by RT-PCR. Total RNA from individual Brevipalpus mites was isolated, and cDNA was prepared to tentatively identify the mite species involved in CiLV-C2H transmission in passionfruit (Druciarek et al 2019, Olmedo-Velarde et al. 2021). CiLV-C2H was detected in individual mites, and the 28S ribosomal mite RNA sequence (MZ478051) shared 99-100% nucleotide identity with B. yothersi (MK293678 and MT812697), a vector of CiLV-C2 (Roy et al. 2013). CiLV-C2 currently has a host range limited to the families Malvaceae, Araceae, and Rutaceae (Roy et al. 2015). CiLV-C2H infects hibiscus alone and citrus in mixed infection with CiLV-C2 (Roy et al; 2018) which is responsible for causing citrus leprosis disease. Detection of CiLV-C2H in passionfruit expands the number of host families of CiLV-C2H.

11.
Arch Virol ; 166(9): 2563-2567, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34117534

RESUMO

Taro reovirus (TaRV) has been reported infecting taro (Colocasia esculenta) in the South Pacific, but information on the virus is limited. Here, we report the genome sequence of a reovirus infecting taro in Papua New Guinea that had 10 genomic segments ranging from 1.1 to 3.9 kilobase pairs (kbp) in length with a total genome length of 26.3 kbp. TaRV was most closely related to rice ragged stunt virus (RRSV) but did not cross-react with RRSV polyclonal antisera. TaRV was not detected in 82 germplasm accessions of taro in Hawaii, or samples collected in American Samoa, Fiji, Guam, Palau, or Vanuatu.


Assuntos
Colocasia/virologia , Orthoreovirus/classificação , Orthoreovirus/genética , Sequência de Aminoácidos , Sequência de Bases , Genoma Viral , Havaí , Sequenciamento de Nucleotídeos em Larga Escala , Orthoreovirus/isolamento & purificação , Filogenia , Reoviridae/classificação , Reoviridae/genética
12.
Virus Genes ; 57(6): 566-570, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524603

RESUMO

The complete genome of a new umbra-like virus from edible fig (Ficus carica) was identified by high-throughput sequencing. Based on its similarity to umbra-like virus genome sequences available in GenBank, the proposed name of this new virus is "fig umbra-like virus" (FULV). The genome of full-length FULV-1 consists of 3049 nucleotides organized into three open reading frames (ORFs). Pairwise comparisons showed that the complete nucleotide sequence of the virus had the highest identity (71.3%) to citrus yellow vein-associated virus (CYVaV). In addition, phylogenetic trees based on whole-genome nucleotide sequences and amino acid sequences of the RNA-dependent RNA polymerase showed that FULV forms a monophyletic lineage with CYVaV and other umbra-like viruses. Based on the demarcation criteria of the genus Umbravirus, and lack of two umbravirus ORFs, we propose that FULV is a putative new member of the umbra-like virus clade within the family Tombusviridae.


Assuntos
Citrus , Ficus , Tombusviridae , Umbridae , Vírus não Classificados , Animais , Vírus de DNA , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Tombusviridae/genética
13.
Virus Genes ; 57(5): 464-468, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34184183

RESUMO

Mealybug wilt of pineapple (MWP) is the most important and complex viral disease affecting pineapple worldwide. High-throughput sequencing was conducted to characterize a new virus identified only in symptomatic pineapple plants and tentatively named pineapple mealybug wilt-associated virus 6 (PMWaV-6). Data analyses revealed a genome of 17,854 nucleotides with an organization resembling members of the genus Ampelovirus, family Closteroviridae. Encoded proteins shared sequence identity with the corresponding proteins of grapevine leafroll-associated virus 3, blackberry vein banding-associated virus, and PMWaV-2. The present study reports the discovery of PMWaV-6, a putative and distinct new member of the genus Ampelovirus, subgroup I, its potential involvement in MWP, and the development of PMWaV-6-specific RT-PCR assays to detect and monitor this virus in field samples.


Assuntos
Ananas/genética , Closteroviridae/isolamento & purificação , Genoma Viral/genética , Ananas/crescimento & desenvolvimento , Ananas/virologia , Closteroviridae/genética , Humanos , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Viral/genética
14.
Arch Virol ; 165(5): 1245-1248, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32227308

RESUMO

The complete genomic sequence of a putative novel member of the family Secoviridae was determined by high-throughput sequencing of a pineapple accession obtained from the National Plant Germplasm Repository in Hilo, Hawaii. The predicted genome of the putative virus was composed of two RNA molecules of 6,128 and 4,161 nucleotides in length, excluding the poly-A tails. Each genome segment contained one large open reading frame (ORF) that shares homology and phylogenetic identity with members of the family Secoviridae. The presence of this new virus in pineapple was confirmed using RT-PCR and Sanger sequencing from six samples collected in Oahu, Hawaii. The name "pineapple secovirus A" (PSVA) is proposed for this putative new sadwavirus.


Assuntos
Ananas/virologia , Genoma Viral , Secoviridae/classificação , Secoviridae/isolamento & purificação , Análise de Sequência de DNA , Biologia Computacional , Ordem dos Genes , Havaí , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Secoviridae/genética
15.
Arch Virol ; 164(6): 1661-1665, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949815

RESUMO

Forty-five papaya samples showing severe leaf curl symptoms were tested by PCR with a degenerate primer set for virus species in the genus Begomovirus. Of these, 29 were positive for tomato leaf curl Bangladesh virus (ToLCBV). The complete genome sequences of ToLCBV (GenBank accession no. MH380003) and its associated tomato leaf curl betasatellite (ToLCB) (MH397223) from papaya isolate Gaz17-Pap were determined and characterized. Defective betasatellites were found in ToLCBV-positive papaya isolates Gaz19-Pap, Gaz20-Pap and Gaz21-Pap. This study confirmed that papaya is a host of ToLCBV, ToLCB, and other defective and recombinant DNA satellites in Bangladesh.


Assuntos
Begomovirus/isolamento & purificação , Carica/virologia , Doenças das Plantas/virologia , Análise de Sequência de DNA/métodos , Bangladesh , Begomovirus/genética , Begomovirus/patogenicidade , Genoma Viral , Solanum lycopersicum/virologia , Filogenia , Vírus Satélites/genética , Vírus Satélites/isolamento & purificação , Vírus Satélites/patogenicidade
16.
Plant Dis ; 103(6): 1220-1227, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30983522

RESUMO

Lima bean (Phaseolus lunatus) is a popular cultivated legume vegetable grown in the United States for dry bean or canned bean production. In 2017, two symptomatic P. lunatus plants exhibiting mosaic, vein banding, and growth retardation were collected in a public garden in Honolulu, HI. Both samples contained bean common mosaic virus (BCMV), and the two BCMV isolates were subjected to biological characterization on a panel of 11 differential cultivars of common bean (P. vulgaris), and to molecular characterization through whole genome sequencing. Both samples contained nearly identical BCMV sequences, named BCMV-A1, which, in turn, were 93% identical to the peanut stripe virus strain of BCMV. BCMV-A1 induced an unusually severe systemic necrosis in cultivar 'Dubbele Witte', and pronounced necrotic or chlorotic reaction in inoculated leaves of five other bean differentials. BCMV-A1 was able to partially overcome resistance alleles bc-1 and bc-2 expressed singly in common bean, inducing no systemic symptoms. Phylogenetic analysis of the BCMV-A1 sequence, and distinct biological reactions in common bean differentials suggested that BCMV-A1 represented a new lima bean strain of BCMV. In 2017, two BCMV isolates were collected in Idaho from common bean, and based on partial genome sequences were found 99% identical to the BCMV-A1 sequence. The data suggest that the lima bean strain of BCMV may have a wider circulation, including common bean as a host. This new strain of BCMV may thus pose a significant threat to common bean production.


Assuntos
Phaseolus , Potyvirus , Genoma Viral/genética , Idaho , Phaseolus/virologia , Filogenia , Potyvirus/classificação , Potyvirus/genética , Especificidade da Espécie
17.
Plant Dis ; 103(9): 2345-2352, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31306086

RESUMO

Ti ringspot is an emerging foliar disease of the ti plant (Cordyline fruticosa) in Hawaii that is quickly spreading throughout the islands. Symptoms include small chlorotic ringspots on leaves that often coalesce to form larger lesions. Although several virus species have been discovered in symptomatic plants, none have been associated with these symptoms. Here, we report and characterize a novel virus closely associated with ti ringspot symptoms in Hawaii. The presence of double membrane bodies approximately 85 nm in diameter in symptomatic cells and sequence analyses of five genomic RNA segments obtained by high-throughput sequencing indicate that this virus is most closely related to members of the plant virus genus Emaravirus. Phylogenetic and sequence homology analyses place this virus on a distinct clade within the Emaravirus genus along with High Plains wheat mosaic emaravirus, blue palo verde broom virus, and Raspberry leaf blotch emaravirus. Sequence identity values with taxonomically relevant proteins indicate that this represents a new virus species, which we are tentatively naming ti ringspot-associated virus (TiRSaV). TiRSaV-specific reverse transcription PCR assays detected the virus in several experimental herbaceous host species following mechanical inoculation. TiRSaV was also detected in eriophyid mites collected from symptomatic ti plants, which may represent a putative arthropod vector of the virus.


Assuntos
Bunyaviridae , Cordyline , Animais , Bunyaviridae/classificação , Bunyaviridae/genética , Bunyaviridae/fisiologia , Cordyline/virologia , Havaí , Filogenia , Doenças das Plantas/virologia
18.
Plant Dis ; 103(11): 2920-2924, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31567059

RESUMO

Papaya ringspot virus (PRSV) is the major constraint to papaya (Carica papaya) production in Bangladesh. Disease symptoms occurred in 90 to 100% of the plants surveyed. Full-length genomes of PRSV strains from severely infected papaya plants were determined using the Illumina NextSeq 500 platform, followed by Sanger DNA sequencing of viral genomes obtained by reverse-transcription PCR(RT-PCR). The genome sequences of two distinct PRSV strains, PRSV BD-1 (10,300 bp) and PRSV BD-2 (10,325 bp) were 74 and 83% identical to each other, respectively, at the nucleotide and amino acid levels. PRSV BD-1 and PRSV BD-2 were 74 to 75% and 79 to 88% identical, respectively, to other full-length PRSV sequences at the nucleotide level. Based on phylogenetic analysis, PRSV BD-2 was most closely related to PRSV-Meghalaya (MF356497) from papaya in India. PRSV BD-1 formed a branch distinct from the other PRSV sequences based on nucleotide and amino acid sequence comparisons. Comparisons of the genome sequences of these two strains with other sequenced PRSV genomes indicated two putative recombination events in PRSV BD-2. One recombinant event contained a 2,766-nucleotide fragment highly identical to PRSV-Meghalaya (MF356497). The other recombinant event contained a 5,105-nucleotide fragment highly identical to PRSV-China (KY933061). The occurrence rates of PRSV BD-1 and PRSV BD-2 in the sampled areas of Bangladesh were approximately 19 and 69%, respectively. Plants infected with both strains (11%) exhibited more severe symptoms than plants infected with either strain alone. The full-length genome sequences of these new PRSV strains and their distribution provide important information regarding the dynamics of papaya ringspot virus infections in papaya in Bangladesh.


Assuntos
Carica , Filogenia , Potyvirus , Bangladesh , Carica/virologia , China , Genoma Viral/genética , Índia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/genética
19.
BMC Genomics ; 19(1): 782, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373513

RESUMO

BACKGROUND: Dickeya sp. strain PA1 is the causal agent of bacterial soft rot in Phalaenopsis, an important indoor orchid in China. PA1 and a few other strains were grouped into a novel species, Dickeya fangzhongdai, and only the orchid-associated strains have been shown to cause soft rot symptoms. METHODS: We constructed the complete PA1 genome sequence and used comparative genomics to explore the differences in genomic features between D. fangzhongdai and other Dickeya species. RESULTS: PA1 has a 4,979,223-bp circular genome with 4269 predicted protein-coding genes. D. fangzhongdai was phylogenetically similar to Dickeya solani and Dickeya dadantii. The type I to type VI secretion systems (T1SS-T6SS), except for the stt-type T2SS, were identified in D. fangzhongdai. The three phylogenetically similar species varied significantly in terms of their T5SSs and T6SSs, as did the different D. fangzhongdai strains. Genomic island (GI) prediction and synteny analysis (compared to D. fangzhongdai strains) of PA1 also indicated the presence of T5SSs and T6SSs in strain-specific regions. Two typical CRISPR arrays were identified in D. fangzhongdai and in most other Dickeya species, except for D. solani. CRISPR-1 was present in all of these Dickeya species, while the presence of CRISPR-2 varied due to species differentiation. A large polyketide/nonribosomal peptide (PK/NRP) cluster, similar to the zeamine biosynthetic gene cluster in Dickeya zeae rice strains, was discovered in D. fangzhongdai and D. solani. The D. fangzhongdai and D. solani strains might recently have acquired this gene cluster by horizontal gene transfer (HGT). CONCLUSIONS: Orchid-associated strains are the typical members of D. fangzhongdai. Genomic analysis of PA1 suggested that this strain presents the genomic characteristics of this novel species. Considering the absence of the stt-type T2SS, the presence of CRISPR loci and the zeamine biosynthetic gene cluster, D. fangzhongdai is likely a transitional form between D. dadantii and D. solani. This is supported by the later acquisition of the zeamine cluster and the loss of CRISPR arrays by D. solani. Comparisons of phylogenetic positions and virulence determinants could be helpful for the effective quarantine and control of this emerging species.


Assuntos
Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Genoma Bacteriano , Genômica , Orchidaceae/microbiologia , Sistemas de Secreção Bacterianos/genética , Composição de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional/métodos , Sequência Conservada , Enterobacteriaceae/metabolismo , Evolução Molecular , Ordem dos Genes , Genes Bacterianos , Genômica/métodos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma
20.
Arch Virol ; 163(11): 3051-3058, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30069855

RESUMO

Star jasmine (Jasminum multiflorum) plants growing in Hawaii expressing a diverse array of virus-like foliar symptoms were examined for the presence of a causal agent. Symptomatic tissues collected from three locations on the island of Oahu, Hawaii consistently harbored double-stranded (ds)RNAs approximately 4.2 and 1.7 kbp in size. Sanger and high-throughput sequencing approaches revealed these dsRNAs were from two distinct virus species co-infecting the same host plant. One of these two viruses was the recently characterized Jasmine virus H (JaVH), and the second we designated as Jasmine mosaic-associated virus (JMaV). Both viruses were subsequently found, by high-throughput sequencing, in a single angelwing jasmine (J. nitidum) plant exhibiting similar ringspot symptoms and growing at the U.S. National Arboretum in Washington, DC. Phylogenetic placement, genome organization, and sequence comparisons indicate these two viruses are classifiable as members of the genus Pelarspovirus (family Tombusviridae). To determine if either of these viruses were associated with the observed symptoms, a PCR-based detection assay was developed to detect and distinguish these two viruses in several Hawaii-grown plants. All 32 samples collected from four Oahu locations displayed symptoms. All 32 samples were positive for JaVH, and 16 were positive for JMaV. An asymptomatic star jasmine plant from the island of Hawaii was negative for both JaVH and JMaV. Both viruses were also found in a symptomatic J. sambac sample from Maryland while only JMaV was detected in a symptomatic Jasminum sp. sample from California.


Assuntos
Jasminum/virologia , Doenças das Plantas/virologia , Tombusviridae/isolamento & purificação , Genoma Viral , Havaí , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Tombusviridae/classificação , Tombusviridae/genética , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA