Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361662

RESUMO

Erinacine A, derived from the mycelia of Hericium erinaceus, has attracted much attention due to its neuroprotective properties. However, very few studies have been conducted on the bioavailability, tissue distribution, and protein binding of erinacine A. This study aimed to investigate the bioavailability, tissue distribution, and protein binding of erinacine A in Sprague-Dawley rats. After oral administration (po) and intravenous administration (iv) of 2.381 g/kg BW of the H. erinaceus mycelia extract (equivalent to 50 mg/kg BW of erinacine A) and 5 mg/kg BW of erinacine A, respectively, the absolute bioavailability of erinacine A was estimated as 24.39%. Erinacine A was detected in brain at 1 h after oral dosing and reached the peak at 8 h. Protein binding assay showed unbound erinacine A fractions in brain to blood ratio is close to unity, supporting passive diffusion as the dominating transport. Feces was the major route for the elimination of erinacine A. This study is the first to show that erinacine A can penetrate the blood-brain barrier of rats by the means of passive diffusion and thus support the development of H. erinaceus mycelia for the improvement of neurohealth.


Assuntos
Diterpenos/metabolismo , Diterpenos/farmacocinética , Hericium/química , Micélio/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacocinética , Espectrometria de Massas em Tandem/métodos , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Cromatografia Líquida/métodos , Diterpenos/administração & dosagem , Fezes/química , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
2.
Nat Immunol ; 9(8): 898-907, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18604210

RESUMO

The inhibitory signaling of natural killer (NK) cells is crucial in the regulation of innate immune responses. Here we show that the association of KIR2DL1, an inhibitory receptor of NK cells, with beta-arrestin 2 mediated recruitment of the tyrosine phosphatases SHP-1 and SHP-2 to KIR2DL1 and facilitated 'downstream' inhibitory signaling. Consequently, the cytotoxicity of NK cells was higher in beta-arrestin 2-deficient mice but was inhibited in beta-arrestin 2-transgenic mice. Moreover, beta-arrestin 2-deficient mice were less susceptible than wild-type mice to mouse cytomegalovirus infection, an effect that was abolished by depletion of NK cells. Our findings identify a previously unknown mechanism by which the inhibitory signaling in NK cells is regulated.


Assuntos
Arrestinas/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Receptores Imunológicos/imunologia , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , beta-Arrestina 2 , beta-Arrestinas
3.
Molecules ; 24(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022946

RESUMO

Erinacine S, so far known to have been produced only in Hericium erinaceus mycelia, has just recently been discovered and is able to reduce amyloid plaque growth and improve neurogenesis in aged brain of rats. However, few investigations have been conducted on the absorption, distribution, and excretion study of Erinacine S. This study aimed to investigate the absolute bioavailability, tissue distribution, and excretion of Erinacine S in H. Erinaceus mycelia in eight-week old Sprague-Dawley rats. After oral administration and intravenous administration of 2.395 g/kg body weight of the H. erinaceus mycelia extract (equivalent to 50 mg/kg body weight Erinacine S) and 5 mg/kg of Erinacine S, respectively, the absolute bioavailability was estimated as 15.13%. In addition, Erinacine S was extensively distributed in organs such as brain, heart, lung, liver, kidney, stomach, small intestine, and large intestine. The maximum concentration of Erinacine S was observed in the stomach, 2 h after the oral administration of H. erinaceus mycelia extract, whereas the maximum amount of Erinacine S found in other tissues were seen after 8 h. Total amount of unconverted Erinacine S eliminated in feces and urine in 24 h was 0.1% of the oral dosage administrated. This study is the first to show that Erinacine S can penetrate the blood-brain barrier of rats and thus support the development of H. erinaceus mycelia, for the treatment of neurological diseases.


Assuntos
Basidiomycota/química , Encéfalo/efeitos dos fármacos , Placa Amiloide/tratamento farmacológico , Sesterterpenos/administração & dosagem , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Micélio/química , Neurogênese/efeitos dos fármacos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Ratos , Sesterterpenos/química , Sesterterpenos/metabolismo , Distribuição Tecidual/efeitos dos fármacos
4.
J Am Chem Soc ; 139(2): 888-896, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28006102

RESUMO

Pd-catalyzed C-H functionalizations promoted by transient directing groups remain largely limited to C-H arylation only. Herein, we report a diverse set of ortho-C(sp2)-H functionalizations of benzaldehyde substrates using the transient directing group strategy. Without installing any auxiliary directing group, Pd(II)-catalyzed C-H arylation, chlorination, bromination, and Ir(III)-catalyzed amidation, could be achieved on benzaldehyde substrates. The transient directing groups formed in situ via imine linkage can override other coordinating functional groups capable of directing C-H activation or catalyst poisoning, significantly expanding the scope for metal-catalyzed C-H functionalization of benzaldehydes. The utility of this approach is demonstrated through multiple applications, including late-stage diversification of a drug analogue.

5.
Acad Radiol ; 28(5): e137-e146, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32417035

RESUMO

RATIONALE AND OBJECTIVE: To investigate the performance of multi-parametric magnetic resonance imaging (MRI) for glioma grading. MATERIALS AND METHODS: Seventy consecutive patients with histopathologically confirmed glioma were retrospectively evaluated by conventional MRI, dynamic susceptibility-weighted contrast-enhanced, multiple diffusion-weighted imaging signal models including mono-exponential, bi-exponential, stretched exponential, and diffusion kurtosis imaging. One-way analysis of variance and independent-samples t test were used to compare the MR parameter values between low and high grades as well as among all grades of glioma. Receiver operating characteristic analysis, Spearman's correlation analysis, and binary logistic regression analysis were used to assess their diagnostic performance. RESULTS: The diagnostic performance (the optimal thresholds, area under the receiver operating characteristic curve, sensitivity, and specificity) was achieved with normalized relative cerebral blood flow (rCBV) (2.240 ml/100 g, 0.844, 87.8%, and 75.9%, respectively), mean kurtosis (MK) (0.471, 0.873, 92.7%, and 79.3%), and water molecular diffusion heterogeneity index (α) (1.064, 0.847, 79.3% and 78.0%) for glioma grading. There were positive correlations between rCBV and MK and the tumor grades and negative correlations between α and the tumor grades (p < 0.01). The parameter of α yielded a diagnostic accuracy of 85.3%, the combination of MK and α yielded a diagnostic accuracy of 89.7%, while the combination of rCBV, MK, and α were more accurate (94.2%) in predicting tumor grade. CONCLUSION: The most accurate parameters were rCBV, MK, and α in dynamic susceptibility-weighted contrast, diffusion kurtosis imaging, and Multi-b diffusion-weighted imaging for glioma grading, respectively. Multiparametric MRI can increase the accuracy of glioma grading.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Gradação de Tumores , Estudos Retrospectivos , Sensibilidade e Especificidade
6.
Cell Signal ; 20(7): 1329-37, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18456458

RESUMO

MAP (Mitogen-activated protein) kinases play an important role in regulating many critical cellular processes. The inactivation of MAP kinases is always accomplished by a family of dual-specificity phosphatases, termed MAPK phosphatases (MKPs). Here, we have identified a novel MKP-like protein, designated DMKP-4, from the Drosophila genome. DMKP-4 is a protein of 387 amino acids, with a dual-specificity phosphatase (DSP) catalytic domain. Recombinant protein DMKP-4 retains intrinsic phosphatase activity against chromogenic substrate pNPP. Overexpression of DMKP-4 inhibited the activation of ERK, JNK and p38 by H(2)O(2), sorbitol and heat shock in HEK293-T cells, and JNK activation in Drosophila S2 cells under PGN stimuli. "Knockdown" of DMKP-4 expression by RNAi significantly enhanced the PGN-stimulated activation of JNK, but not ERK nor p38. Further study revealed that DMKP-4 interacted specifically with JNK via its DSP domain. Mutation of Cys-126 to serine in the DSP domain of DMKP-4 not only eliminated its interaction with JNK, but also markedly reduced its phosphatase activity. Thus, DMKP-4 is a Drosophila homologue of mammalian MKPs, and may play important roles in the regulation of various developmental processes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Compostos de Anilina/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Cisteína/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/genética , Ativação Enzimática , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Compostos Organofosforados/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção
7.
Cell Signal ; 19(2): 393-400, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16978838

RESUMO

Mitogen-activated protein (MAP) kinases play a critical role in innate immune responses to microbial infection through eliciting the biosynthesis of proinflammatory cytokines. MAP phosphatases (MKP)-1 is an archetypical member of the dual-specificity phosphatase family that deactivates MAP kinases. Induction of MKP-1 has been implicated in attenuating the lipopolysaccharide (LPS) and Peptidoglycan (PGN) responses, but how the expression of the MKP-1 is regulated is still not fully understood. Here, we show that inhibition of p38 MAP kinase by specific inhibitor SB 203580 or RNA interference (RNAi) markedly reduced the expression of MKP-1 in LPS or PGN-treated macrophages, which is correlated with prolonged activation of p38 and JNK. Depletion of MAPKAP kinase 2 (MK2), a downstream substrate of p38, by RNAi also inhibited the expression of MKP-1. The mRNA level of MKP-1 is not affected by inhibition of p38, but the expression of MKP-1 is inhibited by treatment of cycloheximide. Thus, p38 MAPK plays a critical role in mediating expression of MKP-1 at a post-transcriptional level. Furthermore, inhibition of p38 by SB 203580 prevented the expression of MKP-1 in LPS-tolerized macrophages, restored the activation of MAP kinases after LPS restimulation. These results indicate a critical role of p38-MK2-dependent induction of MKP-1 in innate immune responses.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Retroalimentação Fisiológica , Regulação Enzimológica da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Macrófagos/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Interações Medicamentosas , Tolerância a Medicamentos , Fosfatase 1 de Especificidade Dupla , Ativação Enzimática , Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Peptidoglicano/farmacologia , Biossíntese de Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 1 , Proteínas Serina-Treonina Quinases , Piridinas/farmacologia , Interferência de RNA , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
8.
Cell Signal ; 18(7): 964-70, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16311020

RESUMO

The TAK1 plays a pivotal role in the innate immune response of Drosophila by controlling the activation of JNK and NF-kappaB. Activation of TAK1 in mammals is mediated by two TAK1-binding proteins, TAB1 and TAB2, but the role of the TAB proteins in the immune response of Drosophila has not yet been established. Here, we report the identification of a TAB2-like protein in Drosophila called dTAB2. dTAB2 can interact with dTAK1, and stimulate the activation of the JNK and NF-kB signaling pathway. Furthermore, we have found that silencing of dTAB2 expression by dsRNAi inhibits JNK activation by peptidoglycans (PGN), but not by NaCl or sorbitol. In addition, suppression of dTAB2 blocked PGN-induced expression of antibacterial peptide genes, a function normally mediated by the activation of NF-kappaB signaling pathway. No significant effect on p38 activation by dTAB2 was found. These results suggest that dTAB2 is specifically required for PGN-induced activation of JNK and NF-kappaB signaling pathways.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Animais , Células Cultivadas , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Ativação Enzimática , Imunidade Inata , Proteínas de Insetos/fisiologia , NF-kappa B/farmacologia , Peptidoglicano/farmacologia , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Cloreto de Sódio/farmacologia , Sorbitol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Clin Invest ; 120(7): 2307-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20551518

RESUMO

Cellular contractility and, thus, the ability to alter cell shape are prerequisites for a number of important biological processes such as cytokinesis, movement, differentiation, and substrate adherence. The contractile capacity of vascular smooth muscle cells (VSMCs) is pivotal for the regulation of vascular tone and thus blood pressure and flow. Here, we report that conditional ablation of the transcriptional regulator Junb results in impaired arterial contractility in vivo and in vitro. This was exemplified by resistance of Junb-deficient mice to DOCA-salt-induced volume-dependent hypertension as well as by a decreased contractile capacity of isolated arteries. Detailed analyses of Junb-deficient VSMCs, mouse embryonic fibroblasts, and endothelial cells revealed a general failure in stress fiber formation and impaired cellular motility. Concomitantly, we identified myosin regulatory light chain 9 (Myl9), which is critically involved in actomyosin contractility and stress fiber assembly, as a Junb target. Consistent with these findings, reexpression of either Junb or Myl9 in Junb-deficient cells restored stress fiber formation, cellular motility, and contractile capacity. Our data establish a molecular link between the activator protein-1 transcription factor subunit Junb and actomyosin-based cellular motility as well as cellular and vascular contractility by governing Myl9 transcription.


Assuntos
Movimento Celular/fisiologia , Regulação da Expressão Gênica , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Actomiosina/metabolismo , Animais , Artérias/metabolismo , Pressão Sanguínea , Diferenciação Celular , Células/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Hipertensão/metabolismo , Camundongos , Camundongos Transgênicos , Contração Muscular , Fator de Transcrição AP-1/metabolismo
10.
Cell Host Microbe ; 6(2): 150-61, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19683681

RESUMO

Retinoic acid-inducible gene-I (RIG-I) plays an important role in antiviral response by recognizing double-stranded RNA. Here we demonstrate an unanticipated role of RIG-I in Toll-like receptor (TLR)-stimulated phagocytosis. Stimulation with lipopolysaccharide (LPS), a ligand of TLR4, induced the expression of RIG-I in macrophages. Depletion of RIG-I by RNAi or gene targeting inhibited the LPS-induced phagocytosis of bacteria. Cellular processes involved in phagocytosis, such as small GTPase Cdc42/Rac1 activation, actin polymerization, and actin-regulator Arp2/3 recruitment, were also impaired in RIG-I-deficient macrophages activated by LPS. Moreover, RIG-I(-/-) mice were found to be more susceptible to infection with Escherichia coli as compared to wild-type mice. Thus, the regulatory functions of RIG-I are strikingly broad, including a role not only in antiviral responses but in antibacterial responses as well.


Assuntos
RNA Helicases DEAD-box/imunologia , Escherichia coli/imunologia , Macrófagos/microbiologia , Fagocitose/imunologia , Receptor 4 Toll-Like/imunologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Infecções por Escherichia coli/imunologia , Proteínas Ativadoras de GTPase/metabolismo , Inativação Gênica , Camundongos , Camundongos Knockout , Neuropeptídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sobrevida , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA