Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 102(9): e25381, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283065

RESUMO

Assessing the glymphatic system activity using diffusion tensor imaging analysis along with the perivascular space (DTI-ALPS) may be helpful to understand the pathophysiology of moyamoya disease (MMD). 63 adult patients with MMD and 20 healthy controls (HCs) were included for T1-weighted images, T2-FLAIR, pseudocontinuous arterial spin labeling, and DTI. 60 patients had digital subtraction angiography more than 6 months after combined revascularization. The Suzuki stage, postoperative Matsushima grade, periventricular anastomoses (PA), enlarged perivascular spaces (EPVS), deep and subcortical white matter hyperintensities (DSWMH), DTI-ALPS, cerebral blood flow (CBF), and cognitive scales of MMD patients were assessed. MMD patients were divided into early and advanced stage based on the Suzuki stage. We detected lower DTI-ALPS in patients with advanced stage relative to HCs (p = 0.046) and patients with early stage (p = 0.004), hemorrhagic MMD compared with ischemic MMD (p = 0.048), and PA Grade 2 compared with Grade 0 (p = 0.010). DTI-ALPS was correlated with the EPVS in basal ganglia (r = -0.686, p < 0.001), Suzuki stage (r = -0.465, p < 0.001), DSWMH (r = -0.423, p = 0.001), and global CBF (r = 0.300, p = 0.017) and cognitive scores (r = 0.343, p = 0.018). The DTI-ALPS of patients with good postoperative collateral formation was higher compared to those with poor postoperative collateral formation (p = 0.038). In conclusion, the glymphatic system was impaired in advanced MMD patients and may affected cognitive function and postoperative neoangiogenesis.


Assuntos
Circulação Cerebrovascular , Imagem de Tensor de Difusão , Sistema Glinfático , Doença de Moyamoya , Humanos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Doença de Moyamoya/patologia , Doença de Moyamoya/fisiopatologia , Feminino , Masculino , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Adulto , Pessoa de Meia-Idade , Circulação Cerebrovascular/fisiologia , Adulto Jovem , Angiografia Digital , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Mol Carcinog ; 63(8): 1559-1571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780126

RESUMO

The therapeutic effect of anlotinib on neuroblastoma is still not fully understood. This study aims to explore the differentiation therapeutic effects of anlotinib on neuroblastoma and its potential association with the neural development regulatory protein collapsin response mediator protein 5 (CRMP5), both in vivo and in vitro. A patient-derived xenograft (PDX) model was established to observe the therapeutic effect of anlotinib. Neuroblastoma cell lines SK-N-SH and SK-N-AS were cultured to observe the morphological impact of anlotinib. Transwell assay was used to evaluate the cell invasion, and Western blot analysis and immunohistochemistry were employed to detect the expressions of neuronal differentiation-related proteins. Results indicate that anlotinib effectively inhibited tumor growth in the PDX model, modulated the expressions of neuronal differentiation markers. In vitro, anlotinib treatment induced neurite outgrowth in neuroblastoma cells and inhibited their invasive ability, reflecting a change in neuronal marker expression patterns consistent with the PDX model. Similarly, in the SK-N-AS mouse xenograft model, anlotinib demonstrated comparable tumor-suppressing effects and promoted neuronal-like differentiation. Additionally, anlotinib significantly downregulated CRMP5 expression in neuroblastoma both in vivo and in vitro. Overexpression of CRMP5 significantly reversed the differentiation therapy effect of anlotinib, exacerbating the aggressiveness and reducing the differentiation level of neuroblastoma. These findings highlight the potential of anlotinib as an anti-neuroblastoma agent. It may suppress tumor proliferation and invasion by promoting the differentiation of tumor cells towards a neuronal-like state, and this differentiation therapy effect involves the inhibition of CRMP5 signaling.


Assuntos
Diferenciação Celular , Proliferação de Células , Indóis , Proteínas do Tecido Nervoso , Neuroblastoma , Quinolinas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/genética , Animais , Camundongos , Quinolinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Indóis/farmacologia , Linhagem Celular Tumoral , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Camundongos Nus , Hidrolases/genética , Hidrolases/metabolismo , Antineoplásicos/farmacologia , Proteínas Associadas aos Microtúbulos
3.
Neurol Sci ; 45(7): 3287-3295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38285326

RESUMO

BACKGROUND: Moyamoya disease (MMD) is a chronic ischemic cerebrovascular disease. Collateral circulation in MMD has emerged as a research focus. Our aims were to assess the impact of anastomoses between the anterior and posterior circulations on the prognosis of MMD patients. METHODS: We reviewed the preoperative digital subtraction angiography images of patients with MMD who underwent revascularization surgery at our hospital between March 2014 and May 2020 and divided the patients into two groups: those with anastomoses (PtoA group) and those without anastomoses (non-PtoA group). The differences in follow-up (more than 6 months) collateral vessel establishment (Matsushima grade) and the modified Rankin Scale (mRS) were compared between the two groups as well as between the patients with different degrees of anastomoses. The early complications following revascularization were also compared between the two groups. RESULTS: This study included 104 patients with MMD, of which 38 were non-PtoA and 66 were PtoA. There were no significant differences in Matsushima score (P = 0.252) and mRS score (P = 0.066) between the two groups. In addition, Matsushima score (P = 0.243) and mRS score (P = 0.360) did not differ significantly between patients with different degrees of anastomoses. However, the non-PtoA group had a significantly higher rate of cerebral hyperperfusion syndrome (CHS) than the PtoA group (34.2% vs 16.7%, P = 0.041). CONCLUSION: MMD patients without anastomoses between anterior and posterior circulations preoperatively should be vigilant of the occurrence of CHS in the early stages after revascularization.


Assuntos
Revascularização Cerebral , Circulação Colateral , Doença de Moyamoya , Humanos , Doença de Moyamoya/cirurgia , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Feminino , Masculino , Adulto , Revascularização Cerebral/métodos , Prognóstico , Pessoa de Meia-Idade , Circulação Colateral/fisiologia , Estudos Retrospectivos , Angiografia Digital , Adolescente , Adulto Jovem , Criança , Circulação Cerebrovascular/fisiologia
4.
Eur Radiol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092950

RESUMO

OBJECTIVE: To investigate the effect of cholinergic pathways damage caused by white matter hyperintensities (WMHs) on cognitive function in moyamoya disease (MMD). METHODS: We included 62 patients with MMD from a prospectively enrolled cohort. We evaluated the burden of cholinergic pathways damage caused by WMHs using the Cholinergic Pathways Hyperintensities Scale (CHIPS). Cognitive function was evaluated with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Cognitive impairment was determined according to the cut-off of MMSE and education. Multivariate linear and logistic regression models were used to analyze whether CHIPS was independently associated with cognition. Receiver operating characteristic curve analysis was performed to identify the ability of CHIPS in discriminating cognitive impairment and normal cognition. RESULTS: CHIPS was associated with both MMSE and MoCA (ß = - 0.601 and ß = - 0.672, both p < 0.001). After correcting age, sex, education, volumes of limbic areas, and other factors, CHIPS remained to be independently associated with both MMSE and MoCA (ß = - 0.388 and ß = - 0.334, both p < 0.001). In the logistic regression, only CHIPS was associated with cognitive impairment (odds ratio = 1.431, 95% confidence interval = 1.103 to 1.856, p = 0.007). The optimal cut-off of CHIPS score was 10, yielding a sensitivity of 87.5% and a specificity of 78.3% in identifying MMD patients with cognitive impairment. CONCLUSIONS: The damage of cholinergic pathways caused by WMHs plays an independent effect on cognition and CHIPS could be a useful method in identifying MMD patients likely to be cognitive impairment. CLINICAL RELEVANCE STATEMENT: This study shows that Cholinergic Pathways Hyperintensities Scale (CHIPS) could be a simple and reliable method in identifying cognitive impairment for patients with moyamoya disease. CHIPS could be helpful in clinical practice, such as guiding treatment decisions and predicting outcome. KEY POINTS: • Cholinergic Pathways Hyperintensities Scale was significantly associated with cognitive screening tests in patients with moyamoya disease. • Cholinergic Pathways Hyperintensities Scale plays an independent effect on cognitive impairment in patients with moyamoya disease. • Cholinergic Pathways Hyperintensities Scale shows higher accuracy than education, volumes of limbic areas, and sex in identifying cognitive impairment in moyamoya disease.

5.
BMC Cancer ; 22(1): 335, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346114

RESUMO

OBJECTIVE: The purpose of this study was to explore the efficacy and safety of transarterial chemoembolization (TACE) combined with apatinib and camrelizumab (TACE + AC) for unresectable hepatocellular carcinoma (HCC), and the impact of the timing of the combination on it. METHODS: In this single-arm retrospective study, consecutive data of patients with unresectable HCC treated to our hospital from March 2017 to September 2021 were collected. These patients were treated with TACE and started on camrelizumab and apatinib within one week of TACE. Camrelizumab 200 mg intravenously once every three weeks and apatinib 250 mg orally once daily. Repeat TACE treatment was available on an on-demand basis. The primary endpoints were overall survival (OS) and progression-free survival (PFS). Secondary endpoints included objective response rate (ORR), disease control rate (DCR), and safety. The univariate and multivariate Cox regression analyses were used to assess the effect of early and late combination on OS and PFS. RESULTS: A total of 80 patients were enrolled in this study. The median OS was 22.1 months (95% confidence interval [CI]: 13.8-30.5 months) and the median PFS was 15.7 months (95% CI: 14.7-16.6 months). The ORR was 58.8% (95% CI: 47.2-69.6) and DCR reached 81.2% (95% CI: 71.0-89.1). Multivariable Cox proportional hazard regression analyses showed that TACE late combined with apatinib and camrelizumab provided better OS than early combination (HR = 0.175, 95% CI:0.060-0.509, P = 0.001), as did PFS (HR = 0.422, 95% CI:0.184-0.967, P = 0.041). All treatment-related adverse events were tolerable, and no serious adverse events were observed. CONCLUSION: TACE combined with apatinib plus camrelizumab for patients with unresectable HCC has promising antitumor activity and a manageable safety profile. For unresectable HCC with large tumor burden, late combination provides better OS and PFS compared to early combination.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Anticorpos Monoclonais Humanizados , Carcinoma Hepatocelular/tratamento farmacológico , Quimioembolização Terapêutica/efeitos adversos , Terapia Combinada , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Piridinas , Estudos Retrospectivos
6.
BMC Neurol ; 22(1): 179, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578209

RESUMO

BACKGROUND: Disruption of brain functional connectivity has been detected after stroke, but whether it also occurs in moyamoya disease (MMD) is unknown. Impaired functional connectivity is always correlated with abnormal white matter fibers. Herein, we used multimodal imaging techniques to explore the changes in brain functional and structural connectivity in MMD patients. METHODS: We collected structural images, resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging for each subject. Cognitive functions of MMD patients were evaluated using the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Trail Making Test parts A and B (TMT-A/-B). We calculated the functional connectivity for every paired region using 90 regions of interest from the Anatomical Automatic Labeling Atlas and then determined the differences between MMD patients and HCs. We extracted the functional connectivity of paired brain regions with significant differences between the two groups. Correlation analyses were then performed between the functional connectivity and variable cognitive functions. To explore whether the impaired functional connectivity and cognitive performances were attributed to the destruction of white matter fibers, we further analyzed fiber integrity using tractography between paired regions that were correlated with cognition. RESULTS: There was lower functional connectivity in MMD patients as compared to HCs between the bilateral inferior frontal gyrus, between the bilateral supramarginal gyrus, between the left supplementary motor area (SMA) and the left orbital part of the inferior frontal gyrus (IFGorb), and between the left SMA and the left middle temporal gyrus (P < 0.01, FDR corrected). The decreased functional connectivity between the left SMA and the left IFGorb was significantly correlated with the MMSE (r = 0.52, P = 0.024), MoCA (r = 0.60, P = 0.006), and TMT-B (r = -0.54, P = 0.048) in MMD patients. White matter fibers were also injured between the SMA and IFGorb in the left hemisphere and were positively correlated with reduced functional connectivity. CONCLUSIONS: Brain functional and structural connectivity between the supplementary motor area and inferior frontal gyrus in the left hemisphere are damaged in MMD. These findings could be useful in the evaluation of disease progression and prognosis of MMD.


Assuntos
Córtex Motor , Doença de Moyamoya , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Córtex Motor/diagnóstico por imagem , Doença de Moyamoya/diagnóstico por imagem , Córtex Pré-Frontal
7.
Parasitol Res ; 121(12): 3403-3415, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36266591

RESUMO

Clonorchis sinensis (C. sinensis) infection is a risk factor for cholangiocarcinoma. Whether it also contributes to the development of hepatocellular carcinoma (HCC) is still unclear. This study explored the potential relationship between C. sinensis infection and HCC. A total of 110 Sprague-Dawley rats were divided into four treatment groups, the negative control group (NC) received intragastric (i.g.) administration of saline, while the clonorchiasis group (CS) received i.g. administration of 150 C. sinensis metacercariae. The diethylnitrosamine-induced group (DEN) received intraperitoneal (i.p.) administration of DEN. The clonorchiasis DEN-induced group (CSDEN) received i.g. administration of 150 C. sinensis metacercariae followed by i.p. administration of DEN. Hematoxylin and eosin staining, immunohistochemistry, and Masson's trichrome staining were performed for histopathological analysis of the isolated tissues. RNA-seq technology and RT-PCR were employed for gene expression. In the DEN group, 15 rats survived, of which 9 developed liver cirrhosis and 7 developed HCC. In the CSDEN group, all of the 17 surviving rats developed cirrhosis, and 15 showed development of HCC. The incidence of liver cirrhosis and HCC was significantly higher in the CSDEN group than in the DEN group. KEGG pathway analysis of the differentially expressed genes suggested significant upregulation in inflammation-associated pathways. Immunohistochemistry and RT-PCR results showed significant upregulation of hepatic progenitor cell markers (CK19, SOX9, EpCAM) in the CS group compared to the NC group, as well as in the CSDEN group compared to the DEN group. Our study suggests that C. sinensis infection increases risk of HCC in a rat model by stimulating proliferation of hepatic progenitor cells.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Clonorquíase , Clonorchis sinensis , Neoplasias Hepáticas , Ratos , Animais , Clonorquíase/complicações , Clonorquíase/patologia , Ratos Sprague-Dawley , Cirrose Hepática/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Fígado/patologia
8.
Mol Med ; 27(1): 45, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952191

RESUMO

BACKGROUND: Circular RNA hsa_circ_0008305 (circPTK2), miR-181c-5p and High mobility group box-1 (HMGB1) had a targeted regulatory relationship through bioinformatics analysis. This study explained the effects of these genes in microglia and sepsis mice. METHODS: Lipopolysaccharide (LPS) or Cecal Ligation and Puncture (CLP) was used to induce inflammation cell model or sepsis mouse model, as needed. Gene levels were measured by enzyme linked immunosorbent assay (ELISA), quantitative real-time PCR or Western blot, as required. Apoptosis was detected by TUNEL assay, and RNase R was used to test the stability of circPTK2. Targeting relationships between genes were analyzed using bioinformatics analysis and dual luciferase assay. Morris water maze test and mitochondrial membrane potential (MMP) detection were conducted to analyze the effects of genes on cognitive dysfunction of mice. RESULTS: Lipopolysaccharide induction triggered the release of pro-inflammatory cytokines, the upregulation of HMGB1 and circPTK2, and the downregulation of miR-181c-5p in microglia. Overexpression of HMGB1 enhanced the effect of LPS, while silencing HMGB1 partially counteracted the effect of LPS. Moreover, miR-181c-5p was a target of circPTK2 and bound to HMGB1. MiR-181c-5p mimic partially reversed the functions of LPS and HMGB1 overexpression, reduced the levels of TNF-α, IL-1ß, and HMGB1, and inhibited apoptosis. CircPTK2 knockdown had the same effect as miR-181c-5p up-regulation. In vivo, sicircPTK2 improved cognitive function, restored MMP level, inhibited apoptosis, reduced the levels of inflammatory factors and apoptotic factors, and increased the survival rate of CLP-induced mice. CONCLUSION: Our research reveals that circPTK2 regulates microglia activation and hippocampal neuronal apoptosis induced by sepsis via miR-181c-5p-HMGB1 signaling.


Assuntos
Proteína HMGB1 , Hipocampo/citologia , MicroRNAs , Microglia/metabolismo , Neurônios/metabolismo , RNA Circular , Sepse/genética , Animais , Apoptose , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Aprendizagem , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Transdução de Sinais
9.
J Neuroinflammation ; 18(1): 154, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233703

RESUMO

BACKGROUND: Complex changes in the brain microenvironment following traumatic brain injury (TBI) can cause neurological impairments for which there are few efficacious therapeutic interventions. The reactivity of astrocytes is one of the keys to microenvironmental changes, such as neuroinflammation, but its role and the molecular mechanisms that underpin it remain unclear. METHODS: Male C57BL/6J mice were subjected to the controlled cortical impact (CCI) to develop a TBI model. The specific ligand of AXL receptor tyrosine kinase (AXL), recombinant mouse growth arrest-specific 6 (rmGas6) was intracerebroventricularly administered, and selective AXL antagonist R428 was intraperitoneally applied at 30 min post-modeling separately. Post-TBI assessments included neurobehavioral assessments, transmission electron microscopy, immunohistochemistry, and western blotting. Real-time polymerase chain reaction (RT-PCR), siRNA transfection, and flow cytometry were performed for mechanism assessments in primary cultured astrocytes. RESULTS: AXL is upregulated mainly in astrocytes after TBI and promotes astrocytes switching to a phenotype that exhibits the capability of ingesting degenerated neurons or debris. As a result, this astrocytic transformation promotes the limitation of neuroinflammation and recovery of neurological dysfunction. Pharmacological inhibition of AXL in astrocytes significantly decreased astrocytic phagocytosis both in vivo and in primary astrocyte cultures, in contrast to the effect of treatment with the rmGas6. AXL activates the signal transducer and activator of the transcription 1 (STAT1) pathway thereby further upregulating ATP-binding cassette transporter 1 (ABCA1). Moreover, the supernatant from GAS6-depleted BV2 cells induced limited enhancement of astrocytic phagocytosis in vitro. CONCLUSION: Our work establishes the role of AXL in the transformation of astrocytes to a phagocytic phenotype via the AXL/STAT1/ABCA1 pathway which contributes to the separation of healthy brain tissue from injury-induced cell debris, further ameliorating neuroinflammation and neurological impairments after TBI. Collectively, our findings provide a potential therapeutic target for TBI.


Assuntos
Astrócitos/enzimologia , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/enzimologia , Fagocitose/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Astrócitos/patologia , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Córtex Cerebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tirosina Quinase Axl
10.
Biochem Soc Trans ; 49(1): 519-529, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544148

RESUMO

The ubiquitin proteasome system (UPS) serves as the major posttranslational modification system for the maintenance of protein homeostasis. The ubiquitin ligases (E3s) are responsible for the recognition and recruitment of specific substrate proteins for polyubiquitination. Really interesting new gene (RING) finger E3s account for the majority of E3s. The human genome encodes more than 600 RING E3s, which are divided into three subclasses: single polypeptide E3s, cullin-RING ligases (CRLs) and other multisubunit E3s. The abnormal regulation of RING E3s has been reported to disrupt normal biological processes and induce the occurrence of many human malignancies. Glioma is the most common type of malignant primary brain tumor. In the last few decades, patient prognosis has improved as novel targeted therapeutic agents have developed. In this review, we will summarize the current knowledge about the dysregulation of RING E3s and the altered stability of their substrates in glioma. We will further introduce and discuss the current status and future perspectives of the application of small inhibitors and proteolysis-targeting chimeric molecules (PROTACs) interfering with RING E3s as potential anticancer agents for glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Glioma/terapia , Humanos , Proteólise/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitinação/genética
11.
Exp Cell Res ; 374(2): 274-281, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30352219

RESUMO

COP9 signalosome subunit 5 (CSN5) has been involved in the progression of diverse human cancers. MMP2 plays an important role in the metastasis of cancer cells. However, the roles and relationship of in pancreatic cancer (PC) is still unknown. Here, our data shown that both CSN5 and MMP2 were significantly upregulated in PC compared with the corresponding adjacent tissues, where a positive correlation in their expression and associated malignant characteristics were found. Further, silencing of CSN5 expression markedly inhibited PC invasion and metastasis in vitro and in vivo, accompanied by decreased MMP2 expression. Moreover, the anti-metastasis role of CSN5 silence was reversed by MMP2 overexpression, whereas knockdown of MMP2 decreased PC metastasis driven by upregulation of CSN5. Further investigation revealed that CSN5 regulated MMP2 expression via activation of FOXM1 in PC cells. Mechanistically, CSN5 directly bound FOXM1 and decreased its ubiquitination to enhance the protein stability of FOXM1. Taken together, the results indicate that CSN5 can contribute to PC invasion and metastasis through activation of FOXM1/MMP2 axis.


Assuntos
Complexo do Signalossomo COP9/genética , Proteína Forkhead Box M1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Peptídeo Hidrolases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metaloproteinase 2 da Matriz/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Células PC-3 , Transdução de Sinais/genética , Ubiquitinação/genética , Regulação para Cima/genética
12.
Dig Dis Sci ; 63(1): 155-165, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29189991

RESUMO

BACKGROUND: Increasing evidence has suggested that E3 Ubiquitin Ligase CSN5 is a newly characterized oncogene involved in various types of cancer. Scavenger receptor class A member 5 (SCARA5) is an important regulator of biological processes in cancer cells. However, the roles and relationship of CSN5 and SCARA5 in hepatocellular carcinoma (HCC) remain unclear. METHODS: We used RT-PCR, Western blot, and immunohistochemistry to measure CSN5 and SCARA5 expression in HCC tissues and corresponding non-tumor tissues. The CSN5 gene was overexpressed or silenced with lentiviral vectors in HCC cells. Cell proliferation was measured using CCK8 assay. And, the cell migration and invasion were analyzed by transwell assay. RESULTS: We found that the expressions of CSN5 and SCARA5 are inversely correlated in HCC tissues, and CSN5 expression levels were negatively correlated with the levels of SCARA5 in various HCC cells. Furthermore, we found that high level of CSN5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis, but low level of SCARA5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis. Additionally, survival of patients with lower expression of CNS5 was significantly better than that of higher expression group, but the survival of patients with higher expression of SCARA5 was significantly better than that of lower expression group. Moreover, knockdown of CSN5 increased SCARA5 expression and inhibited the proliferation and metastasis of HCC cells in vitro and in vivo. Finally, we found that CSN5 regulated SCARA5 expression by modulating ß-catenin. Mechanistically, our results indicate that CSN5 can decrease ß-catenin ubiquitination to enhance the protein expression of SCARA5 in HCC cells. CONCLUSIONS: Our data identified CSN5 as a critical oncoprotein involved in progression of HCC cells, which could serve as a potential therapeutic target in HCC patients.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Carcinoma Hepatocelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores Depuradores Classe A/metabolismo , beta Catenina/metabolismo , Animais , Complexo do Signalossomo COP9/genética , Linhagem Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Experimentais/metabolismo , Peptídeo Hidrolases/genética , Receptores Depuradores Classe A/genética , Transdução de Sinais
13.
World J Surg Oncol ; 14(1): 218, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535234

RESUMO

BACKGROUND: Synchronous development of primary hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) in different sites of the liver have rarely been reported before. The purpose of this study is to investigate the clinicopathological characteristics of synchronous double cancer of HCC and ICC. CASE PRESENTATION: A 56-year-old Chinese man without obvious liver cirrhosis was preoperation diagnosed with multiple HCC in segments VI (SVI) and VII (SVII) by the abdominal computed tomography (CT) and contrast-enhanced ultrasonography (CEUS). We performed hepatic resection of both segments. The tumors in SVI and SVII were pathologically diagnosed as ICC and HCC, respectively. Immunohistochemically, the HCC in SVII was positive for HepPar-1 and negative for CK19, while the ICC in SVI tumor was positive for CK19 and negative for HepPar-1. Interestingly, the immunohistochemical results also showed that the classic hepatic progenitor cell (HPCs) markers CD34 and CD117 were both positive of the two tumors. The patient still survived and at a 1-year follow-up did not show evidence of metastasis or new recurrent lesions. We speculate that the two masses may have originated from HPCs based on the findings of this patient. CONCLUSIONS: Synchronous development of HCC and ICC is very rare with unique clinical and pathological features. The correct preoperative diagnosis of double hepatic cancer of HCC and ICC is difficult. Hepatitis B virus (HBV) and hepatitis C virus (HCV) infection were both the independent risk factor to the development of double liver cancer. Hepatic resection is the preferred and most effective treatment choice. The prognosis of synchronous occurrence of double hepatic cancer was poorer than for either HCC or ICC, and the origin of it needs further study.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Neoplasias Primárias Múltiplas/patologia , Neoplasias dos Ductos Biliares/cirurgia , Carcinoma Hepatocelular/cirurgia , Colangiocarcinoma/cirurgia , Humanos , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Múltiplas/cirurgia , Prognóstico
14.
Chin J Cancer Res ; 26(1): 72-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24653628

RESUMO

OBJECTIVE: Homeobox B9 (HOXB9) is proposed to be involved in tumor angiogenesis and metastasis. We investigated the role of HOXB9 in the progression of colon cancer. METHODS: HOXB9 expression was investigated by immunohistochemically and Western blotting in 128 colon cancer patients and the results were analyzed statistically associated with clinicopathological data and survival of the patients. The effect of HOXB9 on cell invasion and metastases abilities were analyzed in vitro and in vivo. RESULTS: HOXB9 is overexpressed in colon cancer tissues and significantly correlated with metastasis and poor survival of patients (P<0.05, respectively). Additionally, high levels of expression of HOXB9 were observed in metastatic lymph nodes. The down-regulation of HOXB9 expression can inhibit the migration and invasive ability of colon cancer cells, while exogenous expression of HOXB9 in colon cancer cells enhanced cell migration and invasiveness. Moreover, stable knockdown of HOXB9 reduced the liver and lung metastasis of colon cancer in vivo. CONCLUSIONS: HOXB9 may play an important role in the invasion and metastasis of colon cancer cells and may be a useful biomarker for metastasis and prognostic of colon cancer.

15.
Cyberpsychol Behav Soc Netw ; 27(9): 635-640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39058656

RESUMO

A previous study has found a negative correlation between meeting one's romantic partner in online dating (vs. offline) and marriage quality through a quota sample of the U.S. population. This current study replicates and extends this previous study by analyzing another sample of the U.S. population from the Pew Research Center (N = 2,787). Largely consistent with the previous finding, we found that meeting one's partner in online dating (vs. offline) was marginally related to experiencing less relationship success among people in a marital relationship. However, the difference was not observed among people in a nonmarital romantic relationship. In addition, sharing or discussing one's relationship or dating life (i.e., relationship talks) on social media (RToSM) conditioned the link between meeting venue and relationship success. That is, for marital relationships, meeting in online dating was only linked to less relationship success among people with no RToSM but not among those who had RToSM; for nonmarital relationships, there was a positive link between meeting in online dating and relationship success among those who had RToSM, but this positive link was not observed among those who had no RToSM. We further discuss the implications of our findings on the long-term impact of online dating in marital and nonmarital romantic relationships.


Assuntos
Relações Interpessoais , Casamento , Parceiros Sexuais , Mídias Sociais , Humanos , Masculino , Feminino , Adulto , Casamento/psicologia , Mídias Sociais/estatística & dados numéricos , Parceiros Sexuais/psicologia , Internet , Estados Unidos
16.
Cell Signal ; 121: 111279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944255

RESUMO

BACKGROUND: The 26S proteasome non-ATPase regulatory subunit 11 is a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins, and PSMD11 plays a key role in the regulation of embryonic stem cell proteasome activity. However, the role of PSMD11 in hepatocellular carcinoma has not been studied. In this study, it was found that the expression of PSMD11 in HCC tissues was significantly higher than that in para-cancerous tissues, and was associated with poor prognosis. The results of in vitro experiments showed that PSMD11 knockdown could effectively inhibit the proliferation and apoptosis of hepatoma cell lines, and flow cytometry showed that the G0/G1 phase was significantly prolonged. Through protein spectrometry, immunoprecipitation and in vitro experiments, it was found that PSMD11 can promote the proliferation of hepatocellular carcinoma through regulating the ubiquitination of CDK4 and enhancing its protein stability. This study explores the mechanism of action of PSMD11 in hepatocellular carcinoma and provides new insights for the treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Quinase 4 Dependente de Ciclina , Neoplasias Hepáticas , Complexo de Endopeptidases do Proteassoma , Ubiquitinação , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Quinase 4 Dependente de Ciclina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Apoptose , Masculino , Feminino , Proteólise , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
17.
Sci Rep ; 14(1): 9196, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649699

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. Uncontrolled cell proliferation, invasion and migration of pancreatic cancer cells are the fundamental causes of death in PDAC patients. Our previous studies showed that KLF9 inhibits the proliferation, invasion and migration of pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In this study, we found that platelet-activating factor acetylhydrolase IB3 (PAFAH1B3) is highly expressed in pancreatic cancer tissues and cells. In vitro and in vivo studies showed that overexpression of PAFAH1B3 promoted the proliferation and invasion of pancreatic cancer cells, while downregulation of PAFAH1B3 inhibited these processes. We found that KLF9 expression is negatively correlated with PAFAH1B3 expression in pancreatic cancer tissues and cells. Western blotting revealed that KLF9 negatively regulates the expression of PAFAH1B3 in pancreatic cancer tissues and cells. Rescue experiments showed that overexpression of PAFAH1B3 could partially attenuate the suppression of pancreatic cancer cell proliferation, invasion and migration induced by KLF9 overexpression. Finally, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out, and the results showed that KLF9 directly binds to the promoter of PAFAH1B3 and inhibits its transcriptional activity. In conclusion, our study indicated that KLF9 can inhibit the proliferation, invasion, migration and metastasis of pancreatic cancer cells by inhibiting PAFAH1B3.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Neoplasias Pancreáticas , Animais , Feminino , Humanos , Masculino , Camundongos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo
18.
Cell Death Dis ; 15(9): 657, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242557

RESUMO

Pancreatic cancer (PC) is a highly malignant solid tumor whose resistance to gemcitabine (GEM) chemotherapy is a major cause of poor patient prognosis. Although PC is known to thrive on malnutrition, the mechanism underlying its chemotherapy resistance remains unclear. The current study analyzed clinical tissue sample databases using bioinformatics tools and observed significantly upregulated expression of the deubiquitinase STAMBP in PC tissues. Functional experiments revealed that STAMBP knockdown remarkably increases GEM sensitivity in PC cells. Multiple omics analyses suggested that STAMBP enhances aerobic glycolysis and suppresses mitochondrial respiration to increase GEM resistance in PC both in vitro and in vivo. STAMBP knockdown decreased PDK1 levels, an essential regulator of the aerobic glycolytic process, in several cancers. Mechanistically, STAMBP promoted the PDK1-mediated Warburg effect and chemotherapy resistance by modulating E2F1 via direct binding to E2F1 and suppressing its degradation and ubiquitination. High-throughput compound library screening using three-dimensional protein structure analysis and drug screening identified the FDA drug entrectinib as a potent GEM sensitizer and STAMBP inhibitor, augmenting the antitumor effect of GEM in a patient-derived xenograft (PDX) model. Overall, we established a novel mechanism, via the STAMBP-E2F1-PDK1 axis, by which PC cells become chemoresistant in a nutrient-poor tumor microenvironment.


Assuntos
Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Transcrição E2F1 , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int Immunopharmacol ; 142(Pt B): 113230, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321700

RESUMO

BACKGROUND AND AIM: Ulcerative colitis (UC) is a growing global health concern, with current treatments facing challenges like drug dependence and side effects. Fresh bamboo juice (FBJ), known for its antimicrobial and potential immune-modulating properties, has shown promise as a natural therapeutic agent. The present study aimed to explore the protective effects of FBJ against colitis and further analyze the changes of gut microbiota composition, metabolite profiles, and underlying immune mechanisms. MATERIALS AND METHODS: A colitis model in mice was established using DSS to investigate the effectiveness of FBJ. Intestinal tissue and fecal samples were also collected for 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) analysis. Additionally, immunofluorescence and flow cytometry were employed to detect the proliferation and function of group 2 innate lymphoid cells (ILC2). Enzyme-linked immunosorbent assay (ELISA) was used to measure the cytokines secreted by immune cells. RESULTS: FBJ demonstrated significant therapeutic effects against DSS-induced colitis in mice. At the genus level, the abundance of Bacteroides, Akkermansia and unassigned bacteria in the bamboo juice group increased compared with the DSS group. In contrast, the abundance of Alloprevotella, Lactobacillus, Lachnospiraceae_NK4A136_group and Ruminococcaceae_UCG-014 significantly decreased. FBJ partially restored the balance of gut microbiota, as evidenced by the increased levels of beneficial bacteria. Metabolome analysis revealed significant alterations in fecal metabolites, including 3-Hydroxypyridine, Pyridoxine, SM(d18:1/16:0), and DL-Methionine sulfoxide were remarkably altered. Dysregulation of pathways such as Vitamin B6 metabolism, sphingolipid metabolism, and tyrosine metabolism was observed, which may contribute to protection against colitis. Flow cytometry and immunofluorescence showed a significant reduction in the proportion of ILC2 cells following FBJ treatment in the DSS group (1.82 % v.s. 3.18 %, P < 0.05). ELISA showed that the FBJ group had lower levels of IL-5, IL-6, IL-10, IL-13, IL-33, TNF-α, IFN-γ in intestinal tissue. CONCLUSIONS: Our findings demonstrate that FBJ exerts a protective effect against colitis, primarily by modulating the intestinal flora and metabolite profiles in mice with colitis. Furthermore, the observed alterations in bacterial flora and metabolites likely affect ILC2 function and cytokine production, thereby mediating the protective effects against colitis through modulation of the immune system.

20.
J Adv Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142439

RESUMO

INTRODUCTION: Intracerebral haemorrhage (ICH) is a devastating disease that leads to severe neurological deficits. Microglia are the first line of defence in the brain and play a crucial role in neurological recovery after ICH, whose activities are primarily driven by glucose metabolism. However, little is known regarding the status of glucose metabolism in microglia and its interactions with inflammatory responses after ICH. OBJECTIVES: This study investigated microglial glycolysis and its mechanistic effects on microglial inflammation after ICH. METHODS: We explored the status of glucose metabolism in the ipsilateral region and in fluorescence-activated-cell-sorting-isolated (FACS-isolated) microglia via 2-deoxy-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) analyses and gamma emission, respectively. Energy-related targeted metabolomics, along with 13C-glucose isotope tracing, was utilised to analyse glycolytic products in microglia. Mitochondrial membrane potential and mitochondrial reactive oxygen species (MitoROS) accumulation was assessed by flow cytometry. Behavioural, western blotting, gene regulation, and enzymatic activity analyses were conducted with a focus on microglia. RESULTS: Neurological dysfunction was strongly correlated with decreased FDG-PET signals in the perihaematomal region, where microglial uptake of FDG was reduced. The decreased quantity of glucose-6-phosphate (G-6-P) in microglia was attributed to the downregulation of glucose transporter 1 (GLUT1) and hexokinase 2 (HK2). Enhanced inflammatory responses were driven by HK2 suppression via decreased mitochondrial membrane potential, which could be rescued by MitoROS scavengers. HK inhibitors aggravated neurological injury by suppressing FDG uptake and enhancing microglial inflammation in ICH mice. CONCLUSION: These findings indicate an unexpected metabolic status in pro-inflammatory microglia after ICH, consisting of glycolysis impairment caused by the downregulation of GLUT1 and HK2. Additionally, HK2 suppression promotes inflammatory responses by disrupting mitochondrial function, providing insight into the mechanisms by which inflammation may be facilitated after ICH and indicating that metabolic enzymes as potential targets for ICH treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA