Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Cell ; 35(4): 1241-1258, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36648110

RESUMO

In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Células Germinativas Vegetais/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Vacúolos/metabolismo
2.
PLoS Genet ; 18(3): e1010077, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245283

RESUMO

Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process. Here, we further demonstrate that a small amount of ovule primordia initiate at floral stage 10 when the existing ovules initiated at floral stage 9 start to differentiate. Genetic analysis revealed that the absence of PIN3 function leads to the reduction in pistil size and the lack of late-initiated ovules, suggesting PIN3 promotes the late ovule initiation process and pistil growth. Physiological analysis illustrated that, unlike picloram, exogenous application of NAA can't restore these defective phenotypes, implying that PIN3-mediated polar auxin transport is required for the late ovule initiation and pistil length. qRT-PCR results indicated that the expression of SEEDSTICK (STK) is up-regulated under auxin analogues treatment while is down-regulated in pin3 mutants. Meanwhile, overexpressing STK rescues pin3 phenotypes, suggesting STK participates in PIN3-mediated late ovule initiation possibly by promoting pistil growth. Furthermore, brassinosteroid influences the late ovule initiation through positively regulating PIN3 expression. Collectively, this study demonstrates that PIN3 promotes the late ovule initiation and contributes to the extra ovule number. Our results give important clues for increasing seed number and yield of cruciferous and leguminous crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Domínio MADS/genética , Óvulo Vegetal/genética
3.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33234714

RESUMO

Plant ovule initiation determines the maximum of ovule number and has a great impact on the seed number per fruit. The detailed processes of ovule initiation have not been accurately described, although two connected processes, gynoecium and ovule development, have been investigated. Here, we report that ovules initiate asynchronously. The first group of ovule primordia grows out, the placenta elongates, the boundaries of existing ovules enlarge and a new group of primordia initiates from the boundaries. The expression pattern of different marker genes during ovule development illustrates that this asynchronicity continues throughout whole ovule development. PIN-FORMED1 polar distribution and auxin response maxima correlate with ovule primordia asynchronous initiation. We have established computational modeling to show how auxin dynamics influence ovule primordia initiation. Brassinosteroid signaling positively regulates ovule number by promoting placentae size and ovule primordia initiation through strengthening auxin response. Transcriptomic analysis demonstrates numerous known regulators of ovule development and hormone signaling, and many new genes are identified that are involved in ovule development. Taken together, our results illustrate that the ovule primordia initiate asynchronously and the hormone signals are involved in the asynchrony.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Membrana Transportadoras/genética , Óvulo Vegetal/genética , Desenvolvimento Vegetal/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais/genética
4.
Environ Res ; 196: 110373, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33190805

RESUMO

A single measurement of organophosphate flame retardant (OPFR) metabolites in a spot sample is often used in epidemiological studies to estimate individual exposures. Over seven consecutive days, we collected 661 spot samples, including 127 first morning voids (FMVs) and 123 simulated 24-h collections, from 20 healthy adults and analyzed for eight OPFR metabolites. Intraclass correlation coefficients (ICCs) were calculated to evaluate the variability of the analyzed metabolites. In spot samples group, serial measurements of OPFR metabolites showed poor reproducibility (0.0422 ≤ ICC ≤ 0.349), and the within-day variability was the main contributor of the total variability. The estimated ICCs based on different correction methods for urine dilution (i.e., specific gravity-adjusted, creatinine-adjusted, and creatinine as a covariate) were similar, but varied according to gender and body mass index. Uniformly low sensitivities (0.417-0.633) were observed when using a single FMV or spot sample to predict the 1-week highly (top 33.0%) exposed volunteers. Therefore, using a single urinary measurement to predict chronic exposure to OPFRs can lead to a high degree of classification errors. When multiple urine samples are collected, considering the sampling type, the time of collection, and demographic characteristics may provide a more complete approach to assess exposure to diverse OPFRs.


Assuntos
Retardadores de Chama , Adulto , Índice de Massa Corporal , Creatinina , Humanos , Organofosfatos , Reprodutibilidade dos Testes
5.
Pharmacol Res ; 160: 105054, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645358

RESUMO

Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), which are characterized by self-perpetuating inflammation and tissue/organ damage, resulting from the failure of lymphocyte auto-tolerance, cause morbidity and mortality worldwide. The current drugs or therapies including conventional non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs), as well as several biologic therapies such as B cell-targeted, T cell-targeted, cytokines-targeted and cytokines receptors-targeted therapy, cannot completely cure SLE and RA, and are always accompanied by unexpected side effects. Therefore, more studies have explored new methods for therapy and found that the herbal medicine as well as its natural products (NPs) exhibited promising therapeutic value through exerting effects of immunomodulation, anti-inflammation, anti-oxidation, and anti-apoptosis, etc. via regulating abnormal responses in kidney, innate and adaptive immune systems, intestine, synoviocytes, as well as bone system including chondrocytes, osteoclasts, joints and paw tissues. In the present review, we will elucidate the current mainstream drugs and therapies for SLE and RA, and summarize the efficacy and mechanisms of NPs in the treatment of SLE and RA based on available findings including in vitro and in vivo animal models, as well as clinical studies, and further analyze the existing challenges, in order to provide comprehensive evidence for improvement of SLE and RA therapy by NPs and to promote management of these two autoimmune diseases.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Produtos Biológicos/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Animais , Medicina Herbária/métodos , Humanos
6.
Yi Chuan ; 40(4): 327-338, 2018 Apr 20.
Artigo em Zh | MEDLINE | ID: mdl-29704378

RESUMO

Myeloblastosis (MYB) transcription factors are one of the largest families of transcription factors in higher plants. They play an important role in plant development, defense response processes, and non-biological stresses, i.e., drought stress. Foxtail millet (Setaria italica L.), originated in China, is resistant to drought and low nutrition stresses and has been regarded as an ideal material for studying abiotic stress resistance in monocotyledon. In this study, we ran a transcription profile analysis of zheng 204 under low-nitrogen conditions and identified a MYB-like transcription factor SiMYB42, which was up-regulated under low-nitrogen stress. Phylogenetic tree analysis showed that SiMYB42 belongs to R2R3-MYB subfamily and has two MYB conserved domains. Expression pattern analysis showed that SiMYB42 was significantly up-regulated under various stress conditions, including low-nitrogen stress, high salt, drought and ABA conditions. The results of subcellular localization, quantitative real-time PCR and transcriptional activation analysis indicated that SiMYB42 protein localizes to the nucleus and cell membrane of plant cells, mainly expressed in the leaf or root of foxtail millet, and has transcription activation activity. Functional analysis showed that there was no significant difference between transgenic SiMYB42 Arabidopsis and wild-type (WT) Arabidopsis under normal conditions; however, under low-nitrogen condition, the root length, surface area and seedling fresh weight in transgenic SiMYB42 Arabidopsis, were significantly higher than their counterparts in WT. These results suggest that SiMYB42 transgenic plants exhibit higher tolerance to low-nitrogen stress. Expression levels of nitrate transporters genes NRT2.1, NRT2.4 and NRT2.5, which are the transcriptional targets of SiMYB42, were higher in transgenic SiMYB42 Arabidopsis plants than those in WT; the promoter regions of NRT2.1, NRT2.4 and NRT2.5 all have MYB binding sites. These results indicate that SiMYB42 might enhance foxtail millet tolerance to low-nitrogen condition through regulating the expression of nitrate transporter genes. This study reveals the possible functions of SiMYB42 in a low-nitrogen stress response pathway, and provides a foundation for further understanding the entire regulation network of foxtail millet in response to low-nitrogen stress.


Assuntos
Arabidopsis/genética , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Setaria (Planta)/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/classificação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/análise , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Setaria (Planta)/classificação , Setaria (Planta)/metabolismo , Cloreto de Sódio/metabolismo , Fatores de Transcrição/genética
7.
Cell Rep ; 42(7): 112741, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421624

RESUMO

Eukaryotic protein translation is a complex process that requires the participation of different proteins. Defects in the translational machinery often result in embryonic lethality or severe growth defects. Here, we report that RNase L inhibitor 2/ATP-BINDING CASSETTE E2 (RLI2/ABCE2) regulates translation in Arabidopsis thaliana. Null mutation of rli2 is gametophytic and embryonic lethal, whereas knockdown of RLI2 causes pleiotropic developmental defects. RLI2 interacts with several translation-related factors. Knockdown of RLI2 affects the translational efficiency of a subset of proteins involved in translation regulation and embryo development, indicating that RLI2 has critical roles in these processes. In particular, RLI2 knockdown mutant exhibits decreased expression of genes involved in auxin signaling and female gametophyte and embryo development. Therefore, our results reveal that RLI2 facilitates assembly of the translational machinery and indirectly modulates auxin signaling to regulate plant growth and development.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
8.
Autoimmun Rev ; 18(8): 767-777, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31181327

RESUMO

P2X7 receptor (P2X7R), a distinct ligand-gated ion channel, is a member of purinergic type 2 receptor family with ubiquitous expression in human body. Previous studies have revealed a pivotal role of P2X7R in innate and adaptive immunity. Once activated, it will meditate some vital cascaded responses including the assembly of nucleotide-binding domain (NOD) like receptor protein 3 (NLRP3) inflammasome, non-classical secretion of IL-1ß, modulation of cytokine-independent pathways in inflammation such as P2X7R- transglutaminase-2 (TG2) and P2X7R-cathepsin pathway, activation and regulation of T cells, etc. In fact, above responses have been identified to be involved in the development of autoimmunity, specifically, the NLRP3 inflammasome could promote inflammation in massive autoimmune diseases and TG2, as well as cathepsin may contribute to joint destruction and degeneration in inflammatory arthritis. Recently, numerous evidences further suggested the significance of P2X7R in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), etc. In this review, we will succinctly discuss the biological characteristics and summarize the recent progress of the involvement of P2X7R in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.


Assuntos
Doenças Autoimunes/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Doenças Autoimunes/terapia , Humanos
9.
Front Plant Sci ; 10: 980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404166

RESUMO

Brassinosteroid (BR) is a family of bioactive steroid hormones that plays vital roles in plant growth and development. The BR-mediated regulation of plant growth and architecture has been well studied. However, relatively few studies have investigated the BR-related regulation of reproductive development because of the difficulties in excluding non-specific regulation and secondary responses from severe vegetative phenotypes and poor nutritional status. Furthermore, differentially regulating the BR signal in vegetative and reproductive organs is problematic. Thus, establishing a method for modulating the BR signal only in reproductive organs or during reproductive developmental stages will be beneficial. Additionally, the utility of BR applications for crop production is limited because of deleterious side-effects, including the associated decrease in the planting density and lodging resistance. Moreover, enhancing the BR signal may lead to feedback inhibition. In this study, we developed a transformation system for modulating the BR signal differentially during reproductive and vegetative developmental stages. This system involves transformations with different combinations of a reproductive tissue-specific promoter, coding sequences that increase or decrease the BR signal, and various genotypic backgrounds with enhanced or decreased BR signals. The enhanced BR signal generated in transformants was targeted to reproductive organs without affecting vegetative organs. This system may be useful for studying the BR-specific regulation of plant reproductive development and shows promise for optimizing seed yield.

10.
Curr Med Sci ; 39(6): 1019-1028, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31845236

RESUMO

Gestational hypertension (GH) is a common complication during pregnancy. GH is regarded as a potential public health challenge for pregnant women and infants. Limited evidence has linked ambient air pollution to an increased GH risk. However, most of the studies were conducted in developed countries, with inconsistent results obtained. The present study was performed to explore whether exposure to particulate matters with an aerodynamic diameter < 2.5 (PM2.5) and ozone (O3) was related to elevated odds of GH in a Chinese population. This population-based cohort study involved 38 115 pregnant women in Wuhan, China. All information was collected from the Wuhan Maternal and Child Health Management Information System, using standardized quality control. The daily air pollutant data for PM2.5 and O3 were obtained from the 20 monitoring stations of the Wuhan Environmental Monitoring Center during 2014. The nearest monitor approach was applied to individual exposure assessment of PM2.5 and O3 for each participant. After adjusting for major confounders and other air pollutants, a 10 µg/m3 increase in PM2.5 and O3 concentrations was found to correlate to a 1.14-fold [95% confidence interval (95% CI): 1.09, 1.20] and a 1.05-fold (95% CI: 1.02, 1.07) increase in GH risk, respectively. Additionally, stronger relationships between GH risk and PM2.5 and O3 exposure were observed in women who conceived in winter and summer, respectively. These findings suggest that air pollutants may contribute to the development of GH.


Assuntos
Hipertensão Induzida pela Gravidez/epidemiologia , Ozônio/efeitos adversos , Material Particulado/análise , Adulto , Estudos de Coortes , Feminino , Humanos , Hipertensão Induzida pela Gravidez/induzido quimicamente , Idade Materna , Tamanho da Partícula , Material Particulado/efeitos adversos , Gravidez , Estações do Ano , Adulto Jovem
11.
Front Plant Sci ; 9: 784, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967629

RESUMO

Ovule development is one of the most important processes in the reproductive development of higher plants and is a determinant of seed quality and quantity. Phytohormones play key roles in this process since loss-of-function mutants in hormone signaling show defective ovule phenotypes and reduced fertility. However, it is difficult to distinguish the direct effects of hormones on ovule development because it is parts of reproductive development and the defective phenotypes would be the indirect effects following the defective vegetative development. The treatment of hormones is a direct method to investigate the hormonal regulation of ovule development, but ovule is embedded inside several layers of floral organs, and traditional methods for hormone (or inhibitor) treatments have various limitations. We have developed simple methods to apply treatments to the flowers in a living plant, where an inflorescence apex is immersed into a solution in an inverted tube. We have also developed a specific system to culture and treat excised flowers/pistils. These procedures will be useful for research on the hormonal regulation of ovule development. We provide examples of how treatments with brassinosteroids (BR) and BR biosynthesis inhibitor. We cultured and treated plant materials using our newly developed methods, and observed the morphology of wild type ovules and fluorescence signals in a marker line to monitor the progress of ovule development. The results demonstrate BR promotes ovule development and our new methods are efficient and repeatable.

12.
Mol Cytogenet ; 11: 37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946361

RESUMO

BACKGROUND: Non-invasive prenatal testing (NIPT) evaluates circulating cell-free DNA (cfDNA) and has been widely applied, with highly accurate results for detecting foetal trisomies 21, 18 and 13. Recently, increasing attention has been paid to the clinical application of the non-invasive detection of foetal sub-chromosomal duplications and deletions beyond common aneuploidies. CASE PRESENTATION: A 32-year-old healthy pregnant woman was referred to the Medical Genetic Centre of Ganzhou Maternal and Child Health Care Hospital. As routine practice, ultrasound examination at a gestational age of 16 weeks showed that the foetus is normal. To avoid invasive prenatal diagnosis procedures, an NIPT was offered to further screen for common foetal chromosomal abnormalities. The result showed that there was an approximately 50.94 Mb duplication in p11.32-q21.2 of chromosome 18 and an approximately 58.46 Mb deletion in p22.33-p11.1 of chromosome X. In addition, the chromosome karyotypes of the parents and foetus were also analysed. Chromosome karyotype analysis results showed that foetal karyotype was 46,X,der(18), the maternal karyotype was 46,XX,t(X;18)(q13;q21.3), and the paternal karyotype revealed no obvious abnormality. CONCLUSION: In this case, we successfully detected a healthy pregnant woman with balanced translocation X;18(q13;q21.3) and described the foetal karyotype as 46,X,der(18)t(X;18)(q11;q21.1)mat. Our report illustrated these cases which present complex X;autosome balance translocation and X;autosome unbalance translocation which may contribute to severe clinical phenotypes. In addition, our report also proved that the interruption of genes in the Xq critical region is not only reason of primary infertility. Finally, we prompted that NIPT might play a role in the first trimester screening of sub-chromosomal rearrangement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA