Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 21(12): 1366-1372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302957

RESUMO

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow Bi2Se3 films with a controlled thickness on monolayer NbSe2 and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures. We found that the emergence of Rashba-type bulk quantum-well bands and spin-non-degenerate surface states coincides with a marked suppression of the in-plane upper critical magnetic field of the superconductivity in Bi2Se3/monolayer NbSe2 heterostructures. This is a signature of a crossover from Ising- to Rashba-type superconducting pairings, induced by altering the Bi2Se3 film thickness. Our work opens a route for exploring a robust topological superconducting phase in TI/Ising superconductor heterostructures.

2.
Phys Rev Lett ; 129(27): 277001, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638298

RESUMO

In this Letter, we establish a new theoretical paradigm for vortex Majorana physics in the recently discovered topological iron-based superconductors (TFeSCs). While TFeSCs are widely accepted as an exemplar of topological insulators (TIs) with intrinsic s-wave superconductivity, our theory implies that such a common belief could be oversimplified. Our main finding is that the normal-state bulk Dirac nodes, usually ignored in TI-based vortex Majorana theories for TFeSCs, will play a key role of determining the vortex state topology. In particular, the interplay between TI and Dirac nodal bands will lead to multiple competing topological phases for a superconducting vortex line in TFeSCs, including an unprecedented hybrid topological vortex state that carries both Majorana bound states and a gapless dispersion. Remarkably, this exotic hybrid vortex phase generally exists in the vortex phase diagram for our minimal model for TFeSCs and is directly relevant to TFeSC candidates such as LiFeAs. When the fourfold rotation symmetry is broken by vortex-line tilting or curving, the hybrid vortex gets topologically trivialized and becomes Majorana free, which could explain the puzzle of ubiquitous trivial vortices observed in LiFeAs. The origin of the Majorana signal in other TFeSC candidates such as FeTe_{x}Se_{1-x} and CaKFe_{4}As_{4} is also interpreted within our theory framework. Our theory sheds new light on theoretically understanding and experimentally engineering Majorana physics in high-temperature iron-based systems.

3.
Nano Lett ; 21(17): 7277-7283, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415171

RESUMO

The interplay among topology, superconductivity, and magnetism promises to bring a plethora of exotic and unintuitive behaviors in emergent quantum materials. The family of Fe-chalcogenide superconductors FeTexSe1-x are directly relevant in this context due to their intrinsic topological band structure, high-temperature superconductivity, and unconventional pairing symmetry. Despite enormous promise and expectation, the local magnetic properties of FeTexSe1-x remain largely unexplored, which prevents a comprehensive understanding of their underlying material properties. Exploiting nitrogen vacancy (NV) centers in diamond, here we report nanoscale quantum sensing and imaging of magnetic flux generated by exfoliated FeTexSe1-x flakes, demonstrating strong correlation between superconductivity and ferromagnetism in FeTexSe1-x. The coexistence of superconductivity and ferromagnetism in an established topological superconductor opens up new opportunities for exploring exotic spin and charge transport phenomena in quantum materials. The demonstrated coupling between NV centers and FeTexSe1-x may also find applications in developing hybrid architectures for next-generation, solid-state-based quantum information technologies.

4.
Phys Rev Lett ; 127(12): 125901, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597081

RESUMO

In two-dimensional insulators with time-reversal (TR) symmetry, a nonzero local Berry curvature of low-energy massive Dirac fermions can give rise to nontrivial spin and charge responses, even though the integral of the Berry curvature over all occupied states is zero. In this Letter, we present a new effect induced by the electronic Berry curvature. By studying electron-phonon interactions in BaMnSb_{2}, a prototype two-dimensional Dirac material possessing two TR-related massive Dirac cones, we find that the nonzero local Berry curvature of electrons can induce a phonon angular momentum. The direction of this phonon angular momentum is locked to the phonon propagation direction, and thus we refer to it as "phonon helicity" in a way that is reminiscent of electron helicity in spin-orbit-coupled electronic systems. We discuss possible experimental probes of such phonon helicity.

5.
Phys Rev Lett ; 122(18): 186802, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144871

RESUMO

We report magnetotransport studies of InAs/GaSb bilayer quantum wells in a regime where the interlayer tunneling between the electron and hole gases is suppressed. When the chemical potential is tuned close to the charge neutrality point, we observe anomalous quantum oscillations that are inversely periodic in magnetic field and that have an extremely high frequency despite the highly insulating regime where they are observed. The seemingly contradictory coexistence of a high sheet resistance and high frequency quantum oscillations in the charge neutrality regime cannot be understood within the single-particle picture. We propose an interpretation that attributes our experimental observation to the Coulomb drag between the electron and hole gases, thus providing strong evidence of the significance of Coulomb interaction in this topological insulator.

6.
Phys Rev Lett ; 123(2): 027003, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386504

RESUMO

We study vortex bound states in three-dimensional (3D) superconducting Dirac semimetals with time reversal symmetry. We find that there exist robust gapless vortex bound states propagating along the vortex line in the s-wave superconducting state. We refer to this newly found phase as the quasi-1D nodal vortex line phase. According to the Altland-Zirnbauer classification, the phase is characterized by a topological index (ν;N) at k_{z}=0 and k_{z}=π, where ν is the Z_{2} topological invariant for a 0D class-D system and N is the Z topological invariant for a 0D class-A system. Furthermore, we show that the vortex end Majorana zero mode can coexist with the quasi-1D nodal phase in certain types of Dirac semimetals. The possible experimental observations and material realization of such nodal vortex line states are discussed.

7.
Phys Rev Lett ; 116(25): 257003, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391745

RESUMO

Recently, theory has predicted a Majorana zero mode (MZM) to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MZM. Here, spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe SSAR of MZMs in a topological superconductor of the Bi_{2}Te_{3}/NbSe_{2} heterostructure. The zero-bias peak of the tunneling differential conductance at the vortex center is observed substantially higher when the tip polarization and the external magnetic field are parallel rather than antiparallel to each other. This spin dependent tunneling effect provides direct evidence of MZM and reveals its magnetic property in addition to the zero energy modes. Our work will stimulate MZM research on these novel physical properties and, hence, is a step towards experimental study of their statistics and application in quantum computing.

8.
Nat Commun ; 15(1): 2337, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491015

RESUMO

We show that lattice dislocations of topological iron-based superconductors such as FeTe1-xSex will intrinsically trap non-Abelian Majorana quasiparticles, in the absence of any external magnetic field. Our theory is motivated by the recent experimental observations of normal-state weak topology and surface magnetism that coexist with superconductivity in FeTe1-xSex, the combination of which naturally achieves an emergent second-order topological superconductivity in a two-dimensional subsystem spanned by screw or edge dislocations. This exemplifies a new embedded higher-order topological phase in class D, where Majorana zero modes appear around the "corners" of a low-dimensional embedded subsystem, instead of those of the full crystal. A nested domain wall theory is developed to understand the origin of these defect Majorana zero modes. When the surface magnetism is absent, we further find that s± pairing symmetry itself is capable of inducing a different type of class-DIII embedded higher-order topology with defect-bound Majorana Kramers pairs. We also provide detailed discussions on the real-world material candidates for our proposals, including FeTe1-xSex, LiFeAs, ß-PdBi2, and heterostructures of bismuth, etc. Our work establishes lattice defects as a new venue to achieve high-temperature topological quantum information processing.

9.
Nat Commun ; 15(1): 1801, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413591

RESUMO

Finite-momentum Cooper pairing is an unconventional form of superconductivity that is widely believed to require finite magnetization. Altermagnetism is an emerging magnetic phase with highly anisotropic spin-splitting of specific symmetries, but zero net magnetization. Here, we study Cooper pairing in metallic altermagnets connected to conventional s-wave superconductors. Remarkably, we find that the Cooper pairs induced in the altermagnets acquire a finite center-of-mass momentum, despite the zero net magnetization in the system. This anomalous Cooper-pair momentum strongly depends on the propagation direction and exhibits unusual symmetric patterns. Furthermore, it yields several unique features: (i) highly orientation-dependent oscillations in the order parameter, (ii) controllable 0-π transitions in the Josephson supercurrent, (iii) large-oblique-angle Cooper-pair transfer trajectories in junctions parallel with the direction where spin splitting vanishes, and (iv) distinct Fraunhofer patterns in junctions oriented along different directions. Finally, we discuss the implementation of our predictions in candidate materials such as RuO2 and KRu4O8.

10.
Nat Commun ; 14(1): 640, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746955

RESUMO

Superconducting vortices are promising traps to confine non-Abelian Majorana quasi-particles. It has been widely believed that bulk-state topology, of either normal-state or superconducting ground-state wavefunctions, is crucial for enabling Majorana zero modes in solid-state systems. This common belief has shaped two major search directions for Majorana modes, in either intrinsic topological superconductors or trivially superconducting topological materials. Here we show that Majorana-carrying superconducting vortex is not exclusive to bulk-state topology, but can arise from topologically trivial quantum materials as well. We predict that the trivial bands in superconducting HgTe-class materials are responsible for inducing anomalous vortex topological physics that goes beyond any existing theoretical paradigms. A feasible scheme of strain-controlled Majorana engineering and experimental signatures for vortex Majorana modes are also discussed. Our work provides new guidelines for vortex-based Majorana search in general superconductors.

11.
Nat Commun ; 14(1): 6691, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872165

RESUMO

Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.

12.
Nat Commun ; 14(1): 7119, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932274

RESUMO

Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.

13.
Nat Phys ; 18(7): 813-818, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855397

RESUMO

The crystal symmetry of a material dictates the type of topological band structures it may host, and therefore symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call 'quasi-symmetry'. This is the situation where a Hamiltonian has an exact symmetry at lower-order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine-tuning as they enforce that sources of large Berry curvature will occur at arbitrary chemical potentials. We demonstrate that a quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications.

14.
Sci Adv ; 8(43): eabq6589, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306356

RESUMO

Crystalline symmetry is a defining factor of the electronic band topology in solids, where many-body interactions often induce a spontaneous breaking of symmetry. Superconductors lacking an inversion center are among the best systems to study such effects or even to achieve topological superconductivity. Here, we demonstrate that TRuSi materials (with T a transition metal) belong to this class. Their bulk normal states behave as three-dimensional Kramers nodal-line semimetals, characterized by large antisymmetric spin-orbit couplings and by hourglass-like dispersions. Our muon-spin spectroscopy measurements show that certain TRuSi compounds spontaneously break the time-reversal symmetry at the superconducting transition, while unexpectedly showing a fully gapped superconductivity. Their unconventional behavior is consistent with a unitary (s + ip) pairing, reflecting a mixture of spin singlets and spin triplets. By combining an intrinsic time-reversal symmetry-breaking superconductivity with nontrivial electronic bands, TRuSi compounds provide an ideal platform for investigating the rich interplay between unconventional superconductivity and the exotic properties of Kramers nodal-line/hourglass fermions.

15.
Nat Commun ; 12(1): 1175, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608546

RESUMO

Interference patterns provide direct measurement of coherent propagation of matter waves in quantum systems. Superfluidity in Bose-Einstein condensates of excitons can enable long-range ballistic exciton propagation and can lead to emerging long-scale interference patterns. Indirect excitons (IXs) are formed by electrons and holes in separated layers. The theory predicts that the reduced IX recombination enables IX superfluid propagation over macroscopic distances. Here, we present dislocation-like phase singularities in interference patterns produced by condensate of IXs. We analyze how exciton vortices and skyrmions should appear in the interference experiments and show that the observed interference dislocations are not associated with these phase defects. We show that the observed interference dislocations originate from the moiré effect in combined interference patterns of propagating condensate matter waves. The interference dislocations are formed by the IX matter waves ballistically propagating over macroscopic distances. The long-range ballistic IX propagation is the evidence for IX condensate superfluidity.

16.
Sci Bull (Beijing) ; 64(17): 1207-1214, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659600

RESUMO

We study topological vortex phases in iron-based superconductors. Besides the previously known vortex end Majorana zero modes (MZMs) phase stemming from the existence of a three dimensional (3D) strong topological insulator state, we show that there is another topologically nontrivial phase as iron-based superconductors can be doped superconducting 3D weak topological insulators (WTIs). The vortex bound states in a superconducting 3D WTI exhibit two different types of quantum states, a robust nodal superconducting phase with pairs of bulk MZMs and a full-gap topologically nontrivial superconducting phase which has single vortex end MZM in a certain range of doping level. Moreover, we predict and summarize various topological phases in iron-based superconductors, and find that carrier doping and interlayer coupling can drive systems to have phase transitions between these different topological phases.

17.
Sci Rep ; 8(1): 7853, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777139

RESUMO

Sau, Lutchyn, Tewari and Das Sarma (SLTD) proposed a heterostructure consisting of a semiconducting thin film sandwiched between an s-wave superconductor and a magnetic insulator and showed possible Majorana zero mode. Here we study spin polarization of the vortex core states and spin selective Andreev reflection at the vortex center of the SLTD model. In the topological phase, the differential conductance at the vortex center contributed from the Andreev reflection, is spin selective and has a quantized value [Formula: see text] at zero bias. In the topological trivial phase, [Formula: see text] at the lowest quasiparticle energy of the vortex core is spin selective due to the spin-orbit coupling (SOC). Unlike in the topological phase, [Formula: see text] is suppressed in the Giaever limit and vanishes exactly at zero bias due to the quantum destruction interference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA