RESUMO
Many calcifying organisms utilize metabolic CO2 to generate CaCO3 minerals to harden their shells and skeletons. Carbonic anhydrases are evolutionary ancient enzymes that have been proposed to play a key role in the calcification process, with the underlying mechanisms being little understood. Here, we used the calcifying primary mesenchyme cells (PMCs) of sea urchin larva to study the role of cytosolic (iCAs) and extracellular carbonic anhydrases (eCAs) in the cellular carbon concentration mechanism (CCM). Molecular analyses identified iCAs and eCAs in PMCs and highlight the prominent expression of a glycosylphosphatidylinositol-anchored membrane-bound CA (Cara7). Intracellular pH recordings in combination with CO2 pulse experiments demonstrated iCA activity in PMCs. iCA activity measurements, together with pharmacological approaches, revealed an opposing contribution of iCAs and eCAs on the CCM. H+-selective electrodes were used to demonstrate eCA-catalyzed CO2 hydration rates at the cell surface. Knockdown of Cara7 reduced extracellular CO2 hydration rates accompanied by impaired formation of specific skeletal segments. Finally, reduced pHi regulatory capacities during inhibition and knockdown of Cara7 underscore a role of this eCA in cellular HCO3- uptake. This work reveals the function of CAs in the cellular CCM of a marine calcifying animal. Extracellular hydration of metabolic CO2 by Cara7 coupled to HCO3- uptake mechanisms mitigates the loss of carbon and reduces the cellular proton load during the mineralization process. The findings of this work provide insights into the cellular mechanisms of an ancient biological process that is capable of utilizing CO2 to generate a versatile construction material.
Assuntos
Calcificação Fisiológica , Dióxido de Carbono , Carbono , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Ouriços-do-Mar , Animais , Bicarbonatos/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Glicosilfosfatidilinositóis , Concentração de Íons de Hidrogênio , Prótons , Ouriços-do-Mar/enzimologiaRESUMO
The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO2-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.
Assuntos
Ouriços-do-Mar , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva/fisiologia , Ouriços-do-Mar/fisiologia , Oceanos e MaresRESUMO
The energetic costs to generate calcium carbonate skeletons and shells in marine organisms remain largely speculative due to the scarcity of empirical data. However, this information is critical to estimate energetic limitations of marine calcifiers that can explain their sensitivities to changes in sea water carbonate chemistry in past, present and future marine systems. The cost of calcification was evaluated using larval stages of the purple sea urchin, Strongylocentrotus purpuratus. We developed a skeleton re-mineralization assay, in which the skeleton was dissolved in live larvae followed by a re-mineralization over a few days. During skeleton re-mineralization, energetic costs were estimated through the measurement of key metabolic parameters including whole animal metabolic rates, citrate synthase (CS) enzyme activities and mRNA expression as well as mitochondrial densities in the calcifying primary mesenchyme cells (PMCs). Minor increases in a CS activity and a 10-15% increase in mitochondrial densities in PMCs were observed in re-mineralizing larvae as compared to control larvae. Re-mineralization under three different pH conditions (pH 8.1, pH 7.6 and pH 7.1) decreased with decreasing pH accompanied by pronounced increases in CS expression levels and increased mitochondrial densities in PMCs at pH 7.6. Despite a prominent increase in mitochondrial density of primary mesenchyme cells, particularly in the calcifying cohort of this cell type, this work demonstrated a low overall metabolic response to increased mineralization rates on the whole animal level under both, high and low pH conditions. We conclude that calcification in sea urchin larvae is compromised under low pH conditions, associated with low energetic efforts to fuel compensatory processes.
RESUMO
Otopetrins comprise a family of proton-selective channels that are critically important for the mineralization of otoliths and statoconia in vertebrates but whose underlying cellular mechanisms remain largely unknown. Here, we demonstrate that otopetrins are critically involved in the calcification process by providing an exit route for protons liberated by the formation of CaCO3 Using the sea urchin larva, we examined the otopetrin ortholog otop2l, which is exclusively expressed in the calcifying primary mesenchymal cells (PMCs) that generate the calcitic larval skeleton. otop2l expression is stimulated during skeletogenesis, and knockdown of otop2l impairs spicule formation. Intracellular pH measurements demonstrated Zn2+-sensitive H+ fluxes in PMCs that regulate intracellular pH in a Na+/HCO3--independent manner, while Otop2l knockdown reduced membrane proton permeability. Furthermore, Otop2l displays unique features, including strong activation by high extracellular pH (>8.0) and check-valve-like outwardly rectifying H+ flux properties, making it into a cellular proton extrusion machine adapted to oceanic living conditions. Our results provide evidence that otopetrin family proton channels are a central component of the cellular pH regulatory machinery in biomineralizing cells. Their ubiquitous occurrence in calcifying systems across the animal kingdom suggest a conserved physiological function by mediating pH at the site of mineralization. This important role of otopetrin family proton channels has strong implications for our view on the cellular mechanisms of biomineralization and their response to changes in oceanic pH.
Assuntos
Biomineralização , Calcificação Fisiológica/fisiologia , Homeostase , Canais Iônicos/metabolismo , Larva/fisiologia , Prótons , Ouriços-do-Mar/fisiologia , Animais , Transporte Biológico , Concentração de Íons de Hidrogênio , Canais Iônicos/genética , Análise de Célula Única , TranscriptomaRESUMO
Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pHi) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pHi imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pHi regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pHi regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO2-induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal.
Assuntos
Adenilil Ciclases , Biomineralização , Animais , Adenilil Ciclases/química , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-Base , Homeostase , Ouriços-do-Mar/metabolismoRESUMO
The shallow-water hydrothermal vent system of Kueishan Island has been described as one of the world's most acidic and sulfide-rich marine habitats. The only recorded metazoan species living in the direct vicinity of the vents is Xenograpsus testudinatus, a brachyuran crab endemic to marine sulfide-rich vent systems. Despite the toxicity of hydrogen sulfide, X. testudinatus occupies an ecological niche in a sulfide-rich habitat, with the underlying detoxification mechanism remaining unknown. Using laboratory and field-based experiments, we characterized the gills of X. testudinatus that are the major site of sulfide detoxification. Here sulfide is oxidized to thiosulfate or bound to hypotaurine to generate the less toxic thiotaurine. Biochemical and molecular analyses demonstrated that the accumulation of thiosulfate and hypotaurine is mediated by the sodium-independent sulfate anion transporter (SLC26A11) and taurine transporter (Taut), which are expressed in gill epithelia. Histological and metagenomic analyses of gill tissues demonstrated a distinct bacterial signature dominated by Epsilonproteobacteria. Our results suggest that thiotaurine synthesized in gills is used by sulfide-oxidizing endo-symbiotic bacteria, creating an effective sulfide-buffering system. This work identified physiological mechanisms involving host-microbe interactions that support life of a metazoan in one of the most extreme environments on our planet.
Assuntos
Braquiúros , Fontes Hidrotermais , Animais , Tiossulfatos , Sulfetos/toxicidade , Braquiúros/fisiologia , BactériasRESUMO
Digestive systems are complex organs that allow organisms to absorb energy from their environment to fuel vital processes such as growth, development and the maintenance of homeostasis. A comprehensive understanding of digestive physiology is therefore essential to fully understand the energetics of an organism. The digestion of proteins is of particular importance because most heterotrophic organisms are not able to synthesize all essential amino acids. While Echinoderms are basal deuterostomes that share a large genetic similarity with vertebrates, their digestion physiology remains largely unexplored. Using a genetic approach, this work demonstrated that several protease genes including an enteropeptidase, aminopeptidase, carboxypeptidase and trypsin involved in mammalian digestive networks are also found in sea urchin larvae. Through characterization including perturbation experiments with different food treatments and pharmacological inhibition of proteases using specific inhibitors, as well as transcriptomic analysis, we conclude that the trypsin-2 gene codes for a crucial enzyme for protein digestion in Strongylocentrotus purpuratus. Measurements of in vivo digestion rates in the transparent sea urchin larva were not altered by pharmacological inhibition of trypsin (using soybean trypsin inhibitor) or serine proteases (aprotinin), suggesting that proteases are not critically involved in the initial step of microalgal breakdown. This work provides new insights into the digestive physiology of a basal deuterostome and allows comparisons from the molecular to the functional level in the digestive systems of vertebrates and mammals. This knowledge will contribute to a better understanding for conserved digestive mechanisms that evolved in close interaction with their biotic and abiotic environment.
Assuntos
Peptídeo Hidrolases , Vertebrados , Animais , Tripsina/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Vertebrados/genética , Larva , Equinodermos , Ouriços-do-Mar/genética , MamíferosRESUMO
Regulation of ionic composition and pH is a requisite of all digestive systems in the animal kingdom. Larval stages of the marine superphylum Ambulacraria, including echinoderms and hemichordates, were demonstrated to have highly alkaline conditions in their midgut with the underlying epithelial transport mechanisms being largely unknown. Using ion-selective microelectrodes, the present study demonstrated that pluteus larvae of the purple sea urchin have highly alkaline pH (pH â¼9) and low [Na+] (â¼120â mmolâ l-1) in their midgut fluids, compared with the ionic composition of the surrounding seawater. We pharmacologically investigated the role of Na+/H+ exchangers (NHE) in intracellular pH regulation and midgut proton and sodium maintenance using the NHE inhibitor 5-(n-ethyl-n-isopropyl)amiloride (EIPA). Basolateral EIPA application decreased midgut pH while luminal application via micro-injections increased midgut [Na+], without affecting pH. Immunohistochemical analysis demonstrated a luminal localization of NHE-2 (SpSlc9a2) in the midgut epithelium. Specific knockdown of spslc9a2 using Vivo-Morpholinos led to an increase in midgut [Na+] without affecting pH. Acute acidification experiments in combination with quantitative PCR analysis and measurements of midgut pH and [Na+] identified two other NHE isoforms, Spslc9a7 and SpSlc9a8, which potentially contribute to the regulation of [Na+] and pH in midgut fluids. This work provides new insights into ion regulatory mechanisms in the midgut epithelium of sea urchin larvae. The involvement of NHEs in regulating pH and Na+ balance in midgut fluids shows conserved features of insect and vertebrate digestive systems and may contribute to the ability of sea urchin larvae to cope with changes in seawater pH.
Assuntos
Trocadores de Sódio-Hidrogênio , Sódio , Amilorida/farmacologia , Animais , Concentração de Íons de Hidrogênio , Larva/metabolismo , Prótons , Ouriços-do-Mar/metabolismo , Sódio/metabolismoRESUMO
The sea urchin embryo develops a calcitic endoskeleton through intracellular formation of amorphous calcium carbonate (ACC). Intracellular precipitation of ACC, requires [Formula: see text] concentrating as well as proton export mechanisms to promote calcification. These processes are of fundamental importance in biological mineralization, but remain largely unexplored. Here, we demonstrate that the calcifying primary mesenchyme cells (PMCs) use Na+/H+-exchange (NHE) mechanisms to control cellular pH homeostasis during maintenance of the skeleton. During skeleton re-calcification, pHi of PMCs is increased accompanied by substantial elevation in intracellular [Formula: see text] mediated by the [Formula: see text] cotransporter Sp_Slc4a10. However, PMCs lower their pHi regulatory capacities associated with a reduction in NHE activity. Live-cell imaging using green fluorescent protein reporter constructs in combination with intravesicular pH measurements demonstrated alkaline and acidic populations of vesicles in PMCs and extensive trafficking of large V-type H+-ATPase (VHA)-rich acidic vesicles in blastocoelar filopodial cells. Pharmacological and gene expression analyses underline a central role of the VHA isoforms Sp_ATP6V0a1, Sp_ATP6V01_1 and Sp_ATPa1-4 for the process of skeleton re-calcification. These results highlight novel pH regulatory strategies in calcifying cells of a marine species with important implications for our understanding of the mineralization process in times of rapid changes in oceanic pH.
Assuntos
Bicarbonatos/metabolismo , Ouriços-do-Mar/fisiologia , Animais , Transporte Biológico , Calcificação Fisiológica , Carbonato de Cálcio , Concentração de Íons de Hidrogênio , Oceanos e Mares , Prótons , Água do MarRESUMO
Larval stages of members of the Abulacraria superphylum including echinoderms and hemichordates have highly alkaline midguts. To date, the reason for the evolution of such extreme pH conditions in the gut of these organisms remains unknown. Here, we test the hypothesis that, analogous to the acidic stomachs of vertebrates, these alkaline conditions may represent a first defensive barrier to protect from environmental pathogens. pH-optimum curves for five different species of marine bacteria demonstrated a rapid decrease in proliferation rates by 50-60% between pH 8.5 and 9.5. Using the marine bacterium Vibrio diazotrophicus, which elicits a coordinated immune response in the larvae of the sea urchin Strongylocentrotus purpuratus, we studied the physiological responses of the midgut pH regulatory machinery to this pathogen. Gastroscopic microelectrode measurements demonstrate a stimulation of midgut alkalization upon infection with V. diazotrophicus accompanied by an upregulation of acid-base transporter transcripts of the midgut. Pharmacological inhibition of midgut alkalization resulted in an increased mortality rate of larvae during Vibrio infection. Reductions in seawater pH resembling ocean acidification conditions lead to moderate reductions in midgut alkalization. However, these reductions in midgut pH do not affect the immune response or resilience of sea urchin larvae to a Vibrio infection under ocean acidification conditions. Our study addressed the evolutionary benefits of the alkaline midgut of Ambulacraria larval stages. The data indicate that alkaline conditions in the gut may serve as a first defensive barrier against environmental pathogens and that this mechanism can compensate for changes in seawater pH.
Assuntos
Ouriços-do-Mar , Água do Mar , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Larva , VibrioRESUMO
Light has been demonstrated to enhance calcification rates in hermatypic coral species. To date, it remains unresolved whether calcifying epithelia change their ion transport activity during illumination, and whether such a process is mediated by the endosymbiotic algae or can be controlled by the coral host itself. Using a modified Ussing chamber in combination with H+ sensitive microelectrode measurements, the present work demonstrates that light triggers the generation of a skeleton positive potential of up to 0.9 mV in the hermatypic coral Stylophora pistillata. This potential is generated by a net flux of cations towards the skeleton and reaches its maximum at blue (450 nm) light. The effects of pharmacological inhibitors targeting photosynthesis 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and anion transport 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) were investigated by pH microelectrode measurements in coral tissues demonstrating a rapid decrease in tissue pH under illumination. However, these inhibitors showed no effect on the electrophysiological light response of the coral host. By contrast, metabolic inhibition by cyanide and deoxyglucose reversibly inhibited the light-induced cation flux towards the skeleton. These results suggest that ion transport across coral epithelia is directly triggered by blue light, independent of photosynthetic activity of algal endosymbionts. Measurements of this very specific and quantifiable physiological response can provide parameters to identify photoreception mechanisms and will help to broaden our understanding of the mechanistic link between light stimulation and epithelial ion transport, potentially relevant for calcification in hermatypic corals.
Assuntos
Antozoários/efeitos da radiação , Cátions/metabolismo , Transporte de Íons/efeitos da radiação , Luz , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Calcificação Fisiológica , Cátions/efeitos da radiação , Fenômenos EletrofisiológicosRESUMO
Sea urchin larvae reduce developmental rates accompanied by changes in their energy budget when exposed to acidified conditions. The necessity to maintain highly alkaline conditions in their digestive systems led to the hypothesis that gastric pH homeostasis is a key trait affecting larval energy budgets leading to distinct tipping points for growth and survival. To test this hypothesis, sea urchin (Strongylocentrotus purpuratus) larvae were reared for 10â¯days in different pH conditions ranging from pHâ¯7.0 to pHâ¯8.2. Survival, development and growth rates were determined demonstrating severe impacts < pHâ¯7.2. To test the effects of pH on midgut alkalization we measured midgut pH and monitored the expression of acid-base transporters. While larvae were able to maintain their midgut pH at 8.9-9.1 up to an acidification level of pHâ¯7.2, midgut pH was decreased in the lower pH treatments. The maintenance of midgut pH under low pH conditions was accompanied by dynamic changes in the expression level of midgut acid-base transporters. Metabolic rates of the larvae increased with decreasing pH and reached a threshold between pHâ¯7.0 and pHâ¯7.3 where metabolic rates decreased again. Methylation analyses on promoter CpG islands were performed for midgut acid-base transporter genes to test for possible epigenetic modifications after 10-day exposure to different pH conditions. This analysis demonstrated no correlation between methylation level and pH treatments suggesting low potential for epigenetic modification of acid-base transporters upon short-term exposure. Since a clear tipping point was identified at pHâ¯7.2, which is much lower than near-future ocean acidification (OA) scenarios, this study suggests that the early development of the purple sea urchin larva has a comparatively high tolerance to seawater acidification with substantial acclimation capacity and plasticity in a key physiological trait under near-future OA conditions.
Assuntos
Dióxido de Carbono/efeitos adversos , Ouriços-do-Mar/metabolismo , Água do Mar/química , Estômago/efeitos dos fármacos , Ácidos/efeitos adversos , Animais , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Larva/metabolismoRESUMO
The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems. Gastric pH regulation upon experimental ocean acidification was compared in six species of the superphylum Ambulacraria. We observed a strong correlation between sensitivity to ocean acidification and the ability to regulate gut pH. Surprisingly, species with tightly regulated gastric pH were more sensitive to ocean acidification. This study provides evidence that strict maintenance of highly alkaline conditions in the larval gut of Ambulacraria early life stages may dictate their sensitivity to decreases in seawater pH. These findings highlight the importance of identifying and understanding pH regulatory systems in marine larval stages that may contribute to substantial energetic challenges under near-future ocean acidification scenarios.
Assuntos
Trato Gastrointestinal/fisiologia , Invertebrados/fisiologia , Água do Mar/química , Animais , Dióxido de Carbono/análise , Equinodermos/crescimento & desenvolvimento , Equinodermos/fisiologia , Homeostase , Concentração de Íons de Hidrogênio , Invertebrados/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Especificidade da EspécieRESUMO
Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
Assuntos
Ácidos/química , Calcificação Fisiológica , Concentração de Íons de Hidrogênio , Larva/metabolismo , Ouriços-do-Mar/crescimento & desenvolvimento , Água do Mar , Animais , Larva/crescimento & desenvolvimento , Sódio/metabolismoRESUMO
Seawater acidification due to anthropogenic release of CO2 as well as the potential leakage of pure CO2 from sub-seabed carbon capture storage (CCS) sites may impose a serious threat to marine organisms. Although infaunal organisms can be expected to be particularly impacted by decreases in seawater pH, as a result of naturally acidified conditions in benthic habitats, information regarding physiological and behavioral responses is still scarce. Determination of PO2 and P(CO2) gradients within burrows of the brittlestar Amphiura filiformis during environmental hypercapnia demonstrated that besides hypoxic conditions, increases of environmental P(CO2) are additive to the already high P(CO2) (up to 0.08 kPa) within the burrows. In response to up to 4 weeks exposure to pH 7.3 (0.3 kPa P(CO2)) and pH 7.0 (0.6 kPa P(CO2)), metabolic rates of A. filiformis were significantly reduced in pH 7.0 treatments, accompanied by increased ammonium excretion rates. Gene expression analyses demonstrated significant reductions of acid-base (NBCe and AQP9) and metabolic (G6PDH, LDH) genes. Determination of extracellular acid-base status indicated an uncompensated acidosis in CO2-treated animals, which could explain the depressed metabolic rates. Metabolic depression is associated with a retraction of filter feeding arms into sediment burrows. Regeneration of lost arm tissues following traumatic amputation is associated with significant increases in metabolic rate, and hypercapnic conditions (pH 7.0, 0.6 kPa) dramatically reduce the metabolic scope for regeneration, reflected in an 80% reduction in regeneration rate. Thus, the present work demonstrates that elevated seawater P(CO2) significantly affects the environment and the physiology of infaunal organisms like A. filiformis.
Assuntos
Dióxido de Carbono/análise , Equinodermos/fisiologia , Água do Mar/química , Sequência de Aminoácidos , Animais , Mudança Climática , Equinodermos/genética , Metabolismo Energético , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Regeneração , Alinhamento de SequênciaRESUMO
BACKGROUND: Regulation of pH homeostasis is a central feature of all animals to cope with acid-base disturbances caused by respiratory CO2. Although a large body of knowledge is available for vertebrate and mammalian pH regulatory systems, the mechanisms of pH regulation in marine invertebrates remain largely unexplored. RESULTS: We used squid (Sepioteuthis lessoniana), which are known as powerful acid-base regulators to investigate the pH regulatory machinery with a special focus on proton secretion pathways during environmental hypercapnia. We cloned a Rhesus protein (slRhP), V-type H+-ATPase (slVHA) and the Na+/H+ exchanger 3 (slNHE3) from S. lessoniana, which are hypothesized to represent key players in proton secretion pathways among different animal taxa. Specifically designed antibodies for S. lessoniana demonstrated the sub-cellular localization of NKA, VHA (basolateral) and NHE3 (apical) in epidermal ionocytes of early life stages. Gene expression analyses demonstrated that slNHE3, slVHA and slRhP are up regulated in response to environmental hypercapnia (pH 7.31; 0.46 kPa pCO2) in body and yolk tissues compared to control conditions (pH 8.1; 0.045 kPa pCO2). This observation is supported by H+ selective electrode measurements, which detected increased proton gradients in CO2 treated embryos. This compensatory proton secretion is EIPA sensitive and thus confirms the central role of NHE based proton secretion in cephalopods. CONCLUSION: The present work shows that in convergence to teleosts and mammalian pH regulatory systems, cephalopod early life stages have evolved a unique acid-base regulatory machinery located in epidermal ionocytes. Using cephalopod molluscs as an invertebrate model this work provides important insights regarding the unifying evolutionary principles of pH regulation in different animal taxa that enables them to cope with CO2 induced acid-base disturbances.
RESUMO
Fish early life stages have been shown to react sensitive to simulated ocean acidification. In particular, acid-base disturbances elicited by altered seawater carbonate chemistry have been shown to induce pathologies in larval fish. However, the mechanisms underlying these disturbances are largely unknown. We used gene expression profiling of genes involved in acid-base regulation and metabolism to investigate the effects of seawater hypercapnia on developing Japanese ricefish (medaka; Oryzias latipes). Our results demonstrate that embryos respond with delayed development during the time window of 2-5 dpf when exposed to a seawater pCO(2) of 0.12 and 0.42 kPa. This developmental delay is associated with strong down-regulation of genes from major metabolic pathways including glycolysis (G6PDH), Krebs cycle (CS) and the electron transport chain (CytC). In a second step we identified acid-base relevant genes in different ontogenetic stages (embryos, hatchlings and adults) and tissues (gill and intestine) that are up regulated in response to hypercapnia, including NHE3, NBCa, NBCb, AE1a, AE1b, ATP1a1a.1, ATP1a1b, ATP1b1a, Rhag, Rhbg and Rhcg. Interestingly, NHE3 and Rhcg expressions were increased in response to environmental hypercapnia in all ontogenetic stages and tissues tested, indicating the central role of these proteins in acid-base regulation. Furthermore, the increased expression of genes from amino acid metabolism pathways (ALT1, ALT2, AST1a, AST1b, AST2 and GLUD) suggests that energetic demands of hatchlings are fueled by the breakdown of amino acids. The present study provides a first detailed gene expression analysis throughout the ontogeny of a euryhaline teleost in response to seawater hypercapnia, indicating highest sensitivity in early embryonic stages, when functional ion regulatory epithelia are not yet developed.
Assuntos
Dióxido de Carbono/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Oryzias/genética , Transcriptoma , Equilíbrio Ácido-Base/genética , Animais , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/genética , Glicólise/genética , Concentração de Íons de Hidrogênio , Oryzias/embriologia , Oryzias/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar/química , Fatores de TempoRESUMO
The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here, we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues; as in teleost fish, epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a Pco(2) between 0.2 and 0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization, and vital dye-staining techniques. We found one group of cells that is recognized by concavalin A and MitoTracker, which also expresses Na(+)/H(+) exchangers (NHE3) and Na(+)-K(+)-ATPase. Similar to findings obtained in teleosts, these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE-based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy, suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa, which were identified as powerful acid-base regulators during hypercapnic challenges, already exhibit strong acid-base regulatory abilities during embryogenesis.
Assuntos
Equilíbrio Ácido-Base/fisiologia , Decapodiformes/embriologia , Decapodiformes/metabolismo , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Animais , Decapodiformes/ultraestrutura , Eletrofisiologia , Embrião não Mamífero/ultraestrutura , Imuno-Histoquímica , Hibridização In Situ , Coloração e Rotulagem , Equilíbrio Hidroeletrolítico/fisiologiaRESUMO
The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immunohistochemical methods, we demonstrate that Na(+)/K(+)-ATPase (soNKA), a V-type H(+)-ATPase (soV-HA), and Na(+)/HCO(3)(-) cotransporter (soNBC) are colocalized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater Pco(2) (0.16 and 0.35 kPa) over a time course of 6 wk in different ontogenetic stages. The applied CO(2) concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late-stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII, and COX. In contrast, no hypercapnia-induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However, a transiently increased ion regulatory demand was evident during the initial acclimation reaction to elevated seawater Pco(2). Gill Na(+)/K(+)-ATPase activity and protein concentration were increased by ~15% during short (2-11 days) but not long-term (42-days) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the downregulation of ion regulatory and metabolic genes in late-stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater Pco(2).
Assuntos
Equilíbrio Ácido-Base , Dióxido de Carbono/metabolismo , Brânquias/enzimologia , Hipercapnia/enzimologia , Água do Mar/química , Sepia/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Aclimatação , Fatores Etários , Animais , Anidrase Carbônica II/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Brânquias/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Hipercapnia/genética , Imuno-Histoquímica , Hibridização In Situ , Transporte de Íons , Pressão Parcial , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepia/genética , Sepia/crescimento & desenvolvimento , ATPase Trocadora de Sódio-Potássio/genética , ATPases Vacuolares Próton-Translocadoras/genéticaRESUMO
The tissue distribution and ontogeny of Na(+)/K(+)-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na(+)/K(+)-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na(+)/K(+)-ATPase. Na(+)/K(+)-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na(+)/K(+)-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na(+)/K(+)-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na(+)/K(+)-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 +/- 32.4 micromol g (FM) (-1) h(-1)) than in those of L. vulgaris (31.8 +/- 3.3 micromol g (FM) (-1) h(-1)). S. officinalis gills and pancreatic appendages achieved activities of 94.8 +/- 18.5 and 421.8 +/- 102.3 micromol(ATP) g (FM) (-1) h(-1), respectively. High concentrations of Na(+)/K(+)-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO(2)) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.