Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(5): 1402-1419.e18, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33152263

RESUMO

We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.


Assuntos
Linhagem da Célula , Modelos Biológicos , Teratoma/patologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Teratoma/genética
2.
Nat Methods ; 20(9): 1368-1378, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537351

RESUMO

Gene regulatory networks (GRNs) are key determinants of cell function and identity and are dynamically rewired during development and disease. Despite decades of advancement, challenges remain in GRN inference, including dynamic rewiring, causal inference, feedback loop modeling and context specificity. To address these challenges, we develop Dictys, a dynamic GRN inference and analysis method that leverages multiomic single-cell assays of chromatin accessibility and gene expression, context-specific transcription factor footprinting, stochastic process network and efficient probabilistic modeling of single-cell RNA-sequencing read counts. Dictys improves GRN reconstruction accuracy and reproducibility and enables the inference and comparative analysis of context-specific and dynamic GRNs across developmental contexts. Dictys' network analyses recover unique insights in human blood and mouse skin development with cell-type-specific and dynamic GRNs. Its dynamic network visualizations enable time-resolved discovery and investigation of developmental driver transcription factors and their regulated targets. Dictys is available as a free, open-source and user-friendly Python package.


Assuntos
Redes Reguladoras de Genes , Multiômica , Animais , Camundongos , Humanos , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Algoritmos
3.
Nucleic Acids Res ; 50(18): 10717-10732, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200812

RESUMO

The ribosomal core is universally conserved across the tree of life. However, eukaryotic ribosomes contain diverse rRNA expansion segments (ESs) on their surfaces. Sites of ES insertions are predicted from sites of insertion of micro-ESs in archaea. Expansion segment 7 (ES7) is one of the most diverse regions of the ribosome, emanating from a short stem loop and ranging to over 750 nucleotides in mammals. We present secondary and full-atom 3D structures of ES7 from species spanning eukaryotic diversity. Our results are based on experimental 3D structures, the accretion model of ribosomal evolution, phylogenetic relationships, multiple sequence alignments, RNA folding algorithms and 3D modeling by RNAComposer. ES7 contains a distinct motif, the 'ES7 Signature Fold', which is generally invariant in 2D topology and 3D structure in all eukaryotic ribosomes. We establish a model in which ES7 developed over evolution through a series of elementary and recursive growth events. The data are sufficient to support an atomic-level accretion path for rRNA growth. The non-monophyletic distribution of some ES7 features across the phylogeny suggests acquisition via convergent processes. And finally, illustrating the power of our approach, we constructed the 2D and 3D structure of the entire LSU rRNA of Mus musculus.


Assuntos
Eucariotos , RNA Ribossômico , Animais , Eucariotos/genética , Mamíferos/genética , Camundongos , Conformação de Ácido Nucleico , Nucleotídeos/análise , Filogenia , RNA Ribossômico/química , Ribossomos/química , Ribossomos/genética
4.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620713

RESUMO

In the skin, tissue injury results in fibrosis in the form of scars composed of dense extracellular matrix deposited by fibroblasts. The therapeutic goal of regenerative wound healing has remained elusive, in part because principles of fibroblast programming and adaptive response to injury remain incompletely understood. Here, we present a multimodal -omics platform for the comprehensive study of cell populations in complex tissue, which has allowed us to characterize the cells involved in wound healing across both time and space. We employ a stented wound model that recapitulates human tissue repair kinetics and multiple Rainbow transgenic lines to precisely track fibroblast fate during the physiologic response to skin injury. Through integrated analysis of single cell chromatin landscapes and gene expression states, coupled with spatial transcriptomic profiling, we are able to impute fibroblast epigenomes with temporospatial resolution. This has allowed us to reveal potential mechanisms controlling fibroblast fate during migration, proliferation, and differentiation following skin injury, and thereby reexamine the canonical phases of wound healing. These findings have broad implications for the study of tissue repair in complex organ systems.


Assuntos
Cicatriz/patologia , Fibroblastos/metabolismo , Fibrose/patologia , Pele/lesões , Cicatrização/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Feminino , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo
5.
Ann Plast Surg ; 92(4S Suppl 2): S136-S141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556662

RESUMO

INTRODUCTION: Hand fractures are associated with significant morbidity. Current management standards often result in prolonged immobilization, stiffness, and delayed return to functional use. Intramedullary (IM) compression screws offer minimal soft tissue disruption and early postoperative active motion. In this study, we describe our outcomes after intraosseous fracture fixation using IM cannulated headless screws for a multitude of fracture patterns. METHODS: This study is a retrospective review of patients who underwent IM screw placement for fixation of metacarpal and phalangeal fractures by a single surgeon from 2017 to 2022. Data were collected to include patient demographics, fracture details, postoperative complications, and follow-up. Time to range of motion and return to unrestricted motion was recorded. RESULTS: There were 69 patients with 92 fractures (n = 54 metacarpal, n = 38 phalanx). The median patient age was 45 years (range, 18-89 years) with 75.4% males. Majority presented with a single fracture (n = 50, 72.5%), and 38 patients (55.1%) had open fractures. Small finger was the most affected digit (n = 35, 37.6%). The median time to allow range of motion from surgery was 8.7 days (interquartile range, 0-32) with 32 days (interquartile range, 10-62) for unrestricted use of the hand. Thirty-five patients (50.7%) were allowed controlled motion from the first postoperative day. One patient had loss of reduction requiring reintervention for hardware removal, and 1 patient had superficial skin infection managed with oral antibiotics. CONCLUSIONS: Our findings indicate that the IM screw provides reliable fixation for a wide variety of fracture patterns with a low complication rate and offers early return to functional use.


Assuntos
Fixação Intramedular de Fraturas , Fraturas Ósseas , Fraturas Expostas , Ossos Metacarpais , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Ossos Metacarpais/cirurgia , Parafusos Ósseos , Fraturas Ósseas/cirurgia , Fixação Interna de Fraturas , Extremidade Superior
6.
J Am Chem Soc ; 145(42): 23014-23026, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824502

RESUMO

Nitroxyl, HNO/NO-, the one-electron reduced form of NO, is suggested to take part in distinct signaling pathways in mammals and is also a key intermediate in various heme-catalyzed NOx interconversions in the nitrogen cycle. Cytochrome P450nor (Cyt P450nor) is a heme-containing enzyme that performs NO reduction to N2O in fungal denitrification. The reactive intermediate in this enzyme, termed "Intermediate I", is proposed to be an Fe-NHO/Fe-NHOH type species, but it is difficult to study its electronic structure and exact protonation state due to its instability. Here, we utilize a bulky bis-picket fence porphyrin to obtain the first stable heme-HNO model complex, [Fe(3,5-Me-BAFP)(MI)(NHO)], as a model for Intermediate I, and more generally HNO adducts of heme proteins. Due to the steric hindrance of the bis-picket fence porphyrin, [Fe(3,5-Me-BAFP)(MI)(NHO)] is stable (τ1/2 = 56 min at -30 °C), can be isolated as a solid, and is available for thorough spectroscopic characterization. In particular, we were able to solve a conundrum in the literature and provide the first full vibrational characterization of a heme-HNO complex using IR and nuclear resonance vibrational spectroscopy (NRVS). Reactivity studies of [Fe(3,5-Me-BAFP)(MI)(NHO)] with NO gas show a 91 ± 10% yield for N2O formation, demonstrating that heme-HNO complexes are catalytically competent intermediates for NO reduction to N2O in Cyt P450nor. The implications of these results for the mechanism of Cyt P450nor are further discussed.


Assuntos
Hemeproteínas , Porfirinas , Animais , Heme/química , Porfirinas/química , Análise Espectral , Mamíferos/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L30-L44, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130807

RESUMO

Despite recent technological advances such as ex vivo lung perfusion (EVLP), the outcome of lung transplantation remains unsatisfactory with ischemic injury being a common cause for primary graft dysfunction. New therapeutic developments are hampered by limited understanding of pathogenic mediators of ischemic injury to donor lung grafts. Here, to identify novel proteomic effectors underlying the development of lung graft dysfunction, using bioorthogonal protein engineering, we selectively captured and identified newly synthesized glycoproteins (NewS-glycoproteins) produced during EVLP with unprecedented temporal resolution of 4 h. Comparing the NewS-glycoproteomes in lungs with and without warm ischemic injury, we discovered highly specific proteomic signatures with altered synthesis in ischemic lungs, which exhibited close association to hypoxia response pathways. Inspired by the discovered protein signatures, pharmacological modulation of the calcineurin pathway during EVLP of ischemic lungs offered graft protection and improved posttransplantation outcome. In summary, the described EVLP-NewS-glycoproteomics strategy delivers an effective new means to reveal molecular mediators of donor lung pathophysiology and offers the potential to guide future therapeutic development.NEW & NOTEWORTHY This study developed and implemented a bioorthogonal strategy to chemoselectively label, enrich, and characterize newly synthesized (NewS-)glycoproteins during 4-h ex vivo lung perfusion (EVLP). Through this approach, the investigators uncovered specific proteomic signatures associated with warm ischemic injury in donor lung grafts. These signatures exhibit high biological relevance to ischemia-reperfusion injury, validating the robustness of the presented approach.


Assuntos
Transplante de Pulmão , Traumatismo por Reperfusão , Humanos , Perfusão , Proteômica , Isquemia Quente , Pulmão/metabolismo , Traumatismo por Reperfusão/metabolismo , Glicoproteínas/metabolismo
8.
J Am Chem Soc ; 144(36): 16395-16409, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040133

RESUMO

Flavodiiron nitric oxide reductases (FNORs), found in pathogenic bacteria, are capable of reducing nitric oxide (NO) to nitrous oxide (N2O) to detoxify NO released by the human immune system. Previously, we reported the first FNOR model system that mediates direct NO reduction (Dong, H. T.; J. Am. Chem. Soc. 2018, 140, 13429-13440), but no intermediate of the reaction could be characterized. Here, we present a new set of model complexes that, depending on the ligand substitution, can either mediate direct NO reduction or stabilize a highly activated high-spin (hs) {FeNO}7 complex, the first intermediate of the reaction. The precursors, [{FeII(MPA-(RPhO)2)}2] (1, R = H and 2, R = tBu, Me), were prepared first and fully characterized. Complex 1 (without steric protection) directly reduces NO to N2O almost quantitatively, which constitutes only the second example of this reaction in model systems. Contrarily, the reaction of sterically protected 2 with NO forms the stable mononitrosyl complex 3, which shows one of the lowest N-O stretching frequencies (1689 cm-1) observed so far for a mononuclear hs-{FeNO}7 complex. This study confirms that an N-O stretch ≤1700 cm-1 represents the appropriate level of activation of the FeNO unit to enable direct NO reduction. The higher activation level of these hs-{FeNO}7 complexes required for NO reduction compared to those formed in FNORs emphasizes the importance of hydrogen bonding residues in the active sites of FNORs to activate the bound NO ligands for direct N-N coupling and N2O formation. The implications of these results for FNORs are further discussed.


Assuntos
Óxido Nítrico , Óxido Nitroso , Domínio Catalítico , Humanos , Ligantes , Óxido Nítrico/química
9.
J Am Chem Soc ; 144(9): 3804-3820, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212523

RESUMO

Flavodiiron nitric oxide reductases (FNORs) carry out the reduction of nitric oxide (NO) to nitrous oxide (N2O), allowing infectious pathogens to mitigate toxic levels of NO generated in the human immune response. We previously reported the model complex [Fe2(BPMP)(OPr)(NO)2](OTf)2 (1, OPr- = propionate) that contains two coplanar NO ligands and that is capable of quantitative NO reduction to N2O [White et al. J. Am. Chem. Soc. 2018, 140, 2562-2574]. Here we investigate, for the first time, how a distortion of the active site affects the ability of the diiron core to mediate N2O formation. For this purpose, we prepared several analogues of 1 that contain two monodentate ligands in place of the bridging carboxylate, [Fe2(BPMP)(X)2(NO)2]3+/1+ (2-X; X = triflate, 1-methylimidazole, or methanol). Structural data of 2-X show that without the bridging carboxylate, the diiron core expands, leading to elongated (O)N-N(O) distances (from 2.80 Å in 1 to 3.00-3.96 Å in 2-X) and distorted (O)N-Fe-Fe-N(O) dihedral angles (from coplanarity (5.9°) in 1 to 52.9-85.1° in 2-X). Whereas 1 produces quantitative amounts of N2O upon one-electron reduction, N2O production is substantially impeded in 2-X, to an initial 5-10% N2O yield. The main products after reduction are unprecedented hs-FeII/{Fe(NO)2}9/10 dinitrosyl iron complexes (DNICs). Even though mononuclear DNICs are stable and do not show N-N coupling (since it is a spin-forbidden process), the hs-FeII/{Fe(NO)2}9/10 DNICs obtained from 2-X show unexpected reactivity and produce up to quantitative N2O yields after 2 h. The implications of these results for the active site structure of FNORs are discussed.


Assuntos
Óxido Nítrico , Oxirredutases , Catálise , Compostos Ferrosos , Humanos , Ferro/química , Ligantes , Óxido Nítrico/química , Óxido Nitroso , Oxirredutases/química
10.
J Synchrotron Radiat ; 29(Pt 3): 677-686, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511001

RESUMO

Nuclear resonance time domain interferometry (NR-TDI) is used to study the slow dynamics of liquids (that do not require Mössbauer isotopes) at atomic and molecular length scales. Here the TDI method of using a stationary two-line magnetized 57Fe foil as a source and a stationary single-line stainless steel foil analyzer is employed. The new technique of adding an annular slit in front of a single silicon avalanche photodiode detector enables a wide range of momentum transfers (1 to 100 nm-1 by varying the distance between the annular slits and sample) with a high count rate of up to 160 Hz with a Δq resolution of ±1.7 nm-1 at q = 14 nm-1. The sensitivity of this method in determining relaxation times is quantified and discussed. The Kohlrausch-Williams-Watts (KWW) model was used to extract relaxation times for glycerol. These relaxation times give insight into the dynamics of the electron density fluctuations of glycerol as a function of temperature and momentum transfers.

11.
Am J Epidemiol ; 190(2): 295-304, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524122

RESUMO

Socioeconomic status has been associated with cardiovascular disease risk factors. However, few studies have examined this relationship among populations in the US Gulf Coast region. We assessed neighborhood deprivation in relation to obesity and diabetes in 9,626 residents participating in the Gulf Long-Term Follow-Up Study (2011-present) who completed a home visit (2011-2013) with height, weight, waist, and hip measurements. Obesity was categorized as body mass index of at least 30, and diabetes was defined by doctor's diagnosis or prescription medication. Participant home addresses were linked to an established Area Deprivation Index and categorized into 4 levels (1 = least deprived). In adjusted, modified Poisson regression models, participants with greatest deprivation were more likely to have obesity compared with those with least deprivation (adjusted prevalence ratio (aPR) = 1.21, 95% confidence interval (CI): 1.08, 1.35), central obesity (aPR = 1.11, 95% CI: 1.04, 1.19), and diabetes (aPR = 1.49, 95% CI: 1.03, 2.14). Repeated analyses among a subgroup of participants (n = 3,016) whose hemoglobin A1C values were measured 3 years later indicated the association with diabetes (defined as diagnosis, medications, or hemoglobin A1C ≥ 6.5) was similar (aPR = 1.46, 95% CI: 1.14, 1.86). Results suggest neighborhood deprivation is associated with obesity and diabetes in a US region with high baseline prevalence.


Assuntos
Diabetes Mellitus/epidemiologia , Obesidade/epidemiologia , Características de Residência/estatística & dados numéricos , Adulto , Idoso , Consumo de Bebidas Alcoólicas/epidemiologia , Índice de Massa Corporal , Fumar Cigarros/epidemiologia , Feminino , Hemoglobinas Glicadas , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Classe Social , Fatores Socioeconômicos , Sudeste dos Estados Unidos/epidemiologia , Texas/epidemiologia
12.
Ann Surg ; 273(1): 173-180, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30829705

RESUMO

OBJECTIVE: The aim of this study was to determine the interaction of full thickness excisional wounds and tumors in vivo. SUMMARY OF BACKGROUND DATA: Tumors have been described as wounds that do not heal due to similarities in stromal composition. On the basis of observations of slowed tumor growth after ulceration, we hypothesized that full thickness excisional wounds would inhibit tumor progression in vivo. METHODS: To determine the interaction of tumors and wounds, we developed a tumor xenograft/allograft (human head and neck squamous cell carcinoma SAS/mouse breast carcinoma 4T1) wound mouse model. We examined tumor growth with varying temporospatial placement of tumors and wounds or ischemic flap. In addition, we developed a tumor/wound parabiosis model to understand the ability of tumors and wounds to recruit circulating progenitor cells. RESULTS: Tumor growth inhibition by full thickness excisional wounds was dose-dependent, maintained by sequential wounding, and relative to distance. This effect was recapitulated by placement of an ischemic flap directly adjacent to a xenograft tumor. Using a parabiosis model, we demonstrated that a healing wound was able to recruit significantly more circulating progenitor cells than a growing tumor. Tumor inhibition by wound was unaffected by presence of an immune response in an immunocompetent model using a mammary carcinoma. Utilizing functional proteomics, we identified 100 proteins differentially expressed in tumors and wounds. CONCLUSION: Full thickness excisional wounds have the ability to inhibit tumor growth in vivo. Further research may provide an exact mechanism for this remarkable finding and new advances in wound healing and tumor biology.


Assuntos
Neoplasias/patologia , Úlcera/patologia , Ferimentos e Lesões/patologia , Animais , Feminino , Camundongos , Neoplasias/complicações , Úlcera/complicações , Ferimentos e Lesões/complicações
13.
J Chem Phys ; 154(21): 214104, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240999

RESUMO

The 57Fe isomer shift (IS) of pure iron has been measured up to 100 GPa using synchrotron Mössbauer spectroscopy in the time domain. Apart from the expected discontinuity due to the α → ε structural and spin transitions, the IS decreases monotonically with increasing pressure. The absolute shifts were reproduced without semi-empirical calibrations by periodic density functional calculations employing extensive localized basis sets with several common density functionals. However, the best numerical agreement is obtained with the B1WC hybrid functional. Extension of the calculations to 350 GPa, a pressure corresponding to the Earth's inner core, predicted the IS range of 0.00 to -0.85 mm/s, covering the span from Fe(0) to Fe(VI) compounds measured at ambient pressure. The calculations also reproduced the pressure trend from polymorphs of prototypical iron oxide minerals, FeO and Fe2O3. Analysis of the electronic structure shows a strong donation of electrons from oxygen to iron at high pressure. The assignment of formal oxidation to the Fe atom becomes ambiguous under this condition.

14.
Proc Natl Acad Sci U S A ; 115(48): 12124-12129, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429333

RESUMO

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


Assuntos
Benzeno/química , Ferro/química , Zeolitas/química , Catálise , Domínio Catalítico , Hidroxilação , Cinética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Fenol/química
15.
Proc Natl Acad Sci U S A ; 115(18): 4565-4570, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29610304

RESUMO

Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. Density functional theory calculations clarify how the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.


Assuntos
Ferro/química , Zeolitas/química , Zeolitas/metabolismo , Catálise , Domínio Catalítico , Hidroxilação/fisiologia , Ferro/metabolismo , Metano/química , Metano/metabolismo , Metanol/química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Espectrofotometria/métodos
16.
J Am Chem Soc ; 142(27): 11804-11817, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32489096

RESUMO

High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.


Assuntos
Compostos de Ferro/química , Óxidos/química , Teoria da Densidade Funcional , Ácidos de Lewis/química , Conformação Molecular
17.
Inorg Chem ; 59(20): 14967-14982, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989992

RESUMO

We previously reported the synthesis and preliminary characterization of a unique series of low-spin (ls) {FeNO}8-10 complexes supported by an ambiphilic trisphosphineborane ligand, [Fe(TPB)(NO)]+/0/-. Herein, we use advanced spectroscopic techniques and density functional theory (DFT) calculations to extract detailed information as to how the bonding changes across the redox series. We find that, in spite of the highly reduced nature of these complexes, they feature an NO+ ligand throughout with strong Fe-NO π-backbonding and essentially closed-shell electronic structures of their FeNO units. This is enabled by an Fe-B interaction that is present throughout the series. In particular, the most reduced [Fe(TPB)(NO)]- complex, an example of a ls-{FeNO}10 species, features a true reverse dative Fe → B bond where the Fe center acts as a strong Lewis-base. Hence, this complex is in fact electronically similar to the ls-{FeNO}8 system, with two additional electrons "stored" on site in an Fe-B single bond. The outlier in this series is the ls-{FeNO}9 complex, due to spin polarization (quantified by pulse EPR spectroscopy), which weakens the Fe-NO bond. These data are further contextualized by comparison with a related N2 complex, [Fe(TPB)(N2)]-, which is a key intermediate in Fe(TPB)-catalyzed N2 fixation. Our present study finds that the Fe → B interaction is key for storing the electrons needed to achieve a highly reduced state in these systems, and highlights the pitfalls associated with using geometric parameters to try to evaluate reverse dative interactions, a finding with broader implications to the study of transition metal complexes with boratrane and related ligands.

18.
J Craniofac Surg ; 31(1): 15-27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31369496

RESUMO

The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.


Assuntos
Face/cirurgia , Medicina Regenerativa , Crânio/cirurgia , Engenharia Tecidual , Humanos , Procedimentos de Cirurgia Plástica , Cirurgia Plástica
19.
J Craniofac Surg ; 31(6): 1593-1596, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32371710

RESUMO

IMPORTANCE: Alloplastic implants have been applied successfully in reconstruction of the external ear, either for congenital microtia or traumatic injury. OBJECTIVE: The objective of this study was to conduct a comprehensive systematic review of alloplastic implant materials utilized in the reconstruction of the external ear stratified by indication, specific implant type, postoperative complications, and aesthetic outcomes. EVIDENCE REVIEW: A comprehensive systematic review of published literature on alloplastic external ear reconstruction data was conducted utilizing Medline/PubMed database without timeframe limitations in June 2019. Articles were stratified by (1) indication (microtia versus trauma reconstruction) and (2) implant material type. All postoperative complications were recorded and comparatively analyzed between implant types. Aesthetic outcomes were also identified and compared between implant types. FINDINGS: A total of 755 patients (14 case series; follow-up range = 3 months--10 years) met the criteria for this study. Overall complication rate was 12.05% across all indications and materials used. The most frequent complications reported were graft exposure (7.8%), graft explantation (1.72%), and wound dehiscence (0.8%). Of the patients requiring graft explantation (n = 13), 7 (53.85%) received Medpor implants, and the other 6 (46.15%) were identified in silicone implants. Infection was only reported in Medpor implants. The overall rate of an acceptable aesthetic outcome was 99.34%. CONCLUSIONS AND RELEVANCE: Alloplastic implants are a reliable means of achieving an acceptable complication profile in external ear reconstruction. While there was an overall high rate of acceptable aesthetic outcomes, the studies evaluated in this systematic review differed in their criteria for final evaluation of aesthetic outcomes.


Assuntos
Procedimentos de Cirurgia Plástica , Orelha Externa , Humanos , Polietilenos , Próteses e Implantes , Cirurgia Plástica , Resultado do Tratamento
20.
Aesthetic Plast Surg ; 44(2): 308-314, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31722063

RESUMO

BACKGROUND: With advancements in materials engineering, many plastic surgeons have looked to allogeneic tissue and alloplastic materials as a possible source of structure for long-lasting nipple-areola complex reconstruction. Furthermore, in light of the recent mandate from the Food and Drug Administration restricting the marketing and direct indication of acellular dermal matrices (ADMs) in breast reconstruction, we sought to highlight the overall safety and efficacy demonstrated in the existing literature surrounding all alloplastic materials in nipple-areola complex reconstruction. In this study, the authors conduct a systematic review and pooled outcomes analysis on allogenic and alloplastic implant materials utilized to achieve long-lasting nipple projection stratified by specific material used and respective outcomes. METHODS: A comprehensive systematic review on allogenic and synthetic materials data utilized in nipple reconstruction was conducted utilizing Medline/PubMed database. Articles were stratified by (1) alloplastic material, as well as (2) objective and patient-reported outcomes. RESULTS: A total of 592 nipple-areola complexes on 482 patients were featured in 15 case series. In all studies, alloplastic or allograft material was utilized to achieve and maintain nipple projection. Subjective measurements revealed a patient satisfaction rate of 93.3% or higher with the majority of patients being very satisfied with their reconstruction. The alloplastic and allograft implants analyzed had an overall complication rate of 5.3% across all materials used. The most common complication reported was flap or graft necrosis with a pooled rate of 2.5%. Overall, the Ceratite implant presented with the highest complication rate (18%) including flap/graft necrosis (13%) and extrusion of the artificial bone (5%). Other rigid implants such as the biodesign nipple reconstruction cylinder reported complications of extrusion (3.6%), projection loss requiring revision (2.5%), wound dehiscence/drainage (1.5%), flap or graft necrosis (1.0%) and excessive bleeding (0.5%). ADM implants had reported complications of both insufficient projection (0.8%) and excessive projection (1.6%), which required surgical revision. Injectable materials had minimal reported complications of pain during injection (0.8%) with Radiesse and a false-positive PET scan result (0.8%) with DermaLive. CONCLUSIONS: Allogeneic and alloplastic grafts are a reliable means of achieving satisfactory nipple projection, with a relatively low overall complication profile. The use of Ceratite (artificial bone) led to the highest complication rates. Further clinical studies are necessary to better understand the feasibility and longer-term outcomes of the use of allogeneic and synthetic augmentation grafts to improve nipple projection. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Assuntos
Neoplasias da Mama , Transplante de Células-Tronco Hematopoéticas , Mamoplastia , Estética , Humanos , Mamoplastia/efeitos adversos , Mamilos/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA