Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 565(7741): 581-586, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700868

RESUMO

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

2.
Phys Chem Chem Phys ; 26(6): 5027-5037, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38258478

RESUMO

Organometal halide perovskites are promising materials for optoelectronic applications, whose commercial realization depends critically on their stability under multiple environmental factors. In this study, a methylammonium lead bromide (MAPbBr3) single crystal was cleaved and exposed to simultaneous oxygen and light illumination under ultrahigh vacuum (UHV). The exposure process was monitored using X-ray photoelectron spectroscopy (XPS) with precise control of the exposure time and oxygen pressure. It was found that the combination of oxygen and light accelerated the degradation of MAPbBr3, which could not be viewed as a simple addition of that by oxygen-only and light-only exposures. The XPS spectra showed significant loss of carbon, bromine, and nitrogen at an oxygen exposure of 1010 Langmuir with light illumination, approximately 17 times of the additive effects of oxygen-only and light-only exposures. It was also found that the photoluminescence (PL) emission was much weakened by oxygen and light co-exposure, while previous reports had shown that PL was substantially enhanced by oxygen-only exposure. Measurements using a scanning electron microscope (SEM) and focused ion beam (FIB) demonstrated that the crystal surface was much roughened by the co-exposure. Density functional theory (DFT) calculations revealed the formation of superoxide and oxygen induced gap state, suggesting the creation of oxygen radicals by light illumination as a possible microscopic driving force for enhanced degradation.

3.
Zhonghua Xin Xue Guan Bing Za Zhi ; 51(8): 851-858, 2023 Aug 24.
Artigo em Zh | MEDLINE | ID: mdl-37583334

RESUMO

Objective: To investigate the impact of combined use and timing of arterial-venous extracorporeal membrane oxygenation (VA-ECMO) with intra-aortic balloon pump (IABP) on the prognosis of patients with acute myocardial infarction complicated with cardiogenic shock (AMICS). Methods: This was a prospective cohort study, patients with acute myocardial infarction and cardiogenic shock who received VA-ECMO support from the Heart Center of Lanzhou University First Hospital from March 2019 to March 2022 in the registration database of the Chinese Society for Extracorporeal Life Support were enrolled. According to combination with IABP and time point, patients were divided into VA-ECMO alone group, VA-ECMO+IABP concurrent group and VA-ECMO+IABP non-concurrent group. Data from 3 groups of patients were collected, including the demographic characteristics, risk factors, ECG and echocardiographic examination results, critical illness characteristics, coronary intervention results, VA-ECMO related parameters and complications were compared among the three groups. The primary clinical endpoint was all-cause death, and the safety indicators of mechanical circulatory support included a decrease in hemoglobin greater than 50 g/L, gastrointestinal bleeding, bacteremia, lower extremity ischemia, lower extremity thrombosis, acute kidney injury, pulmonary edema and stroke. Kaplan-Meier survival curves were used to analyze the survival outcomes of patients within 30 days of follow-up. Using VA-ECMO+IABP concurrent group as reference, multivariate Cox regression model was used to evaluate the effect of the combination of VA-ECMO+IABP at different time points on the prognosis of AMICS patients within 30 days. Results: The study included 68 AMICS patients who were supported by VA-ECMO, average age was (59.8±10.8) years, there were 12 female patients (17.6%), 19 cases were in VA-ECMO alone group, 34 cases in VA-ECMO+IABP concurrent group and 15 cases in VA-ECMO+IABP non-concurrent group. The success rate of ECMO weaning in the VA-ECMO+IABP concurrent group was significantly higher than that in the VA-ECMO alone group and the VA-ECMO+IABP non-concurrent group (all P<0.05). Compared with the ECMO+IABP non-concurrent group, the other two groups had shorter ECMO support time, lower rates of acute kidney injury complications (all P<0.05), and lower rates of pulmonary edema complications in the ECMO alone group (P<0.05). In-hospital survival rate was significantly higher in the VA-ECMO+IABP concurrent group (28 patients (82.4%)) than in the VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (7 patients) (all P<0.05). The survival rate up to 30 days of follow-up was also significantly higher surviving patients within were in the ECMO+IABP concurrent group (26 cases) than in VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (4 patients) (all P<0.05). Multivariate Cox regression analysis showed that compared with the concurrent use of VA-ECMO+IABP, the use of VA-ECMO alone and non-concurrent use of VA-ECMO+IABP were associated with increased 30-day mortality in AMICS patients (HR=2.801, P=0.036; HR=2.985, P=0.033, respectively). Conclusions: When VA-ECMO is indicated for AMICS patients, combined use with IABP at the same time can improve the ECMO weaning rate, in-hospital survival and survival at 30 days post discharge, and which does not increase additional complications.


Assuntos
Oxigenação por Membrana Extracorpórea , Infarto do Miocárdio , Edema Pulmonar , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Choque Cardiogênico/terapia , Choque Cardiogênico/complicações , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Edema Pulmonar/complicações , Assistência ao Convalescente , Estudos Prospectivos , Alta do Paciente , Infarto do Miocárdio/complicações , Infarto do Miocárdio/terapia , Balão Intra-Aórtico/efeitos adversos , Balão Intra-Aórtico/métodos , Resultado do Tratamento , Estudos Retrospectivos
5.
Zhonghua Yi Xue Za Zhi ; 102(32): 2538-2540, 2022 Aug 30.
Artigo em Zh | MEDLINE | ID: mdl-36008325

RESUMO

This study aimed to build a home use deep learning segmentation model to identify the scope of caries lesions. A total of 494 caries photographs of molars and premolars collected via endoscopy were selected. Subsequently, these photographs were labeled by physicians and underwent segmentation training by using DeepLabv3+, and then verification and evaluation were performed. The mean accuracy was 0.993, the sensitivity was 0.661, the specificity was 0.997, the Dice coefficient was 0.685, and the intersection over union (IoU) was 0.529. Therefore, the present deep learning segmentation model can identify and segment the scope of caries.


Assuntos
Aprendizado Profundo , Dente Pré-Molar , Suscetibilidade à Cárie Dentária , Dente Molar/patologia
6.
Phys Rev Lett ; 127(10): 105001, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533333

RESUMO

Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.1038/s41586-019-0877-0]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the ℓ=1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and ℓ=1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2×10^{14} fusion reactions.

7.
Phys Rev Lett ; 125(10): 105001, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955319

RESUMO

Shock release from inertial confinement fusion (ICF) shells poses a great challenge to single-fluid hydrodynamic equations, especially for describing materials composed of different ion species. This has been evidenced by a recent experiment [Haberberger et al., Phys. Rev. Lett. 123, 235001 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.235001], in which low-density plasmas (10^{19} to 10^{20} cm^{-3}) are measured to move far ahead of what radiation-hydrodynamic simulations predict. To understand such experimental observations, we have performed large-scale nonequilibrium molecular-dynamics simulations of shock release in polystyrene (CH) at experimental conditions. These simulations revealed that upon shock releasing from the back surface of a CH foil, hydrogen can stream out of the bulk of the foil due to its mass being lighter than carbon. This released hydrogen, exhibiting a much broader velocity distribution than carbon, forms low-density plasmas moving in nearly constant velocities ahead of the in-flight shell, which is in quantitative agreement with the experimental measurements. Such kinetic effect of species separation is currently missing in single-fluid radiation-hydrodynamics codes for ICF simulations.

8.
Phys Rev Lett ; 125(6): 065001, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845678

RESUMO

A new class of ignition designs is proposed for inertial confinement fusion experiments. These designs are based on the hot-spot ignition approach, but instead of a conventional target that is comprised of a spherical shell with a thin frozen deuterium-tritium (DT) layer, a liquid DT sphere inside a wetted-foam shell is used, and the lower-density central region and higher-density shell are created dynamically by appropriately shaping the laser pulse. These offer several advantages, including simplicity in target production (suitable for mass production for inertial fusion energy), absence of the fill tube (leading to a more-symmetric implosion), and lower sensitivity to both laser imprint and physics uncertainty in shock interaction with the ice-vapor interface. The design evolution starts by launching an ∼1-Mbar shock into a DT sphere. After bouncing from the center, the reflected shock reaches the outer surface of the sphere and the shocked material starts to expand outward. Supporting ablation pressure ultimately stops such expansion and subsequently launches a shock toward the target center, compressing the ablator and fuel, and forming a shell. The shell is then accelerated and fuel is compressed by appropriately shaping the drive laser pulse, forming a hot spot using the conventional or shock ignition approaches. This Letter demonstrates the feasibility of the new concept using hydrodynamic simulations and discusses the advantages and disadvantages of the concept compared with more-traditional inertial confinement fusion designs.

9.
Phys Rev Lett ; 122(12): 125701, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978067

RESUMO

A multifaceted first-principles approach utilizing density functional theory, evolutionary algorithms, and lattice dynamics was used to construct the phase diagram of silicon up to 4 TPa and 26 000 K. These calculations predicted that (i) an anomalous sequence of face-centered cubic to body-centered cubic to simple cubic crystalline phase transitions occur at pressures of 2.87 and 3.89 TPa, respectively, along the cold curve, (ii) the orthorhombic phases of Imma and Cmce-16 appear on the phase diagram only when the anharmonic contribution to the Gibbs free energy is taken into account, and (iii) a substantial change in the slope of the principal Hugoniot is observed if the anharmonic free energy of the cubic diamond phase is considered.

10.
Phys Rev Lett ; 123(14): 143202, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702195

RESUMO

Dichroism in double photoionization of H_{2} molecules by elliptically polarized extreme ultraviolet pulses is formulated analytically as a sum of atomiclike dichroism (AD) and molecular symmetry-mixed dichroism (MSMD) terms. The MSMD originates from an interplay of ^{1}Σ_{u}^{+} and ^{1}Π_{u}^{+} continuum molecular ionization amplitudes. For detection geometries in which the AD vanishes, numerical results for the sixfold differential probabilities for opposite pulse helicities show that the MSMD is significant in the electron momentum and angular distributions and is controllable by the ellipticity.

11.
Phys Rev Lett ; 122(8): 085001, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932616

RESUMO

We are reporting the observation of the breakdown of electrons' degeneracy and emergence of classical statistics in the simplest element: metallic deuterium. We have studied the optical reflectance, shock velocity, and temperature of dynamically compressed liquid deuterium up to its Fermi temperature T_{F}. Above the insulator-metal transition, the optical reflectance shows the distinctive temperature-independent resistivity saturation, which is prescribed by Mott's minimum metallic limit, in agreement with previous experiments. At T>0.4 T_{F}, however, the reflectance of metallic deuterium starts to rise with a temperature-dependent slope, consistent with the breakdown of the Fermi surface. The experimentally inferred electron-ion collisional time in this region exhibits the characteristic temperature dependence expected for a classical Landau-Spitzer plasma. Our observation of electron degeneracy lifting extends studies of degeneracy to new fermionic species-electron Fermi systems-and offers an invaluable benchmark for quantum statistical models of Coulomb systems over a wide range of temperatures relevant to dense astrophysical objects and ignition physics.

12.
Phys Rev Lett ; 123(23): 235001, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868457

RESUMO

The material release on the side opposite to the laser drive of a CH shell was probed at conditions relevant to inertial confinement fusion. The release was found to expand further with a longer scale length than that predicted by radiation-hydrodynamic simulations. The simulations show that a relaxation of the back side of the shell consistent with measurements explains the experimentally observed reduction in inertial confinement fusion implosion performance-specifically, reduced areal density at peak compression.

13.
Phys Rev Lett ; 123(5): 055002, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491329

RESUMO

Collisionless shocks are ubiquitous in the Universe as a consequence of supersonic plasma flows sweeping through interstellar and intergalactic media. These shocks are the cause of many observed astrophysical phenomena, but details of shock structure and behavior remain controversial because of the lack of ways to study them experimentally. Laboratory experiments reported here, with astrophysically relevant plasma parameters, demonstrate for the first time the formation of a quasiperpendicular magnetized collisionless shock. In the upstream it is fringed by a filamented turbulent region, a rudiment for a secondary Weibel-driven shock. This turbulent structure is found responsible for electron acceleration to energies exceeding the average energy by two orders of magnitude.

14.
Phys Rev Lett ; 121(14): 145001, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339443

RESUMO

Electronic transport properties of warm dense matter, such as electrical or thermal conductivities and nonadiabatic stopping power, are of particular interest to geophysics, planetary science, astrophysics, and inertial confinement fusion (ICF). One example is the α-particle stopping power of dense deuterium-tritium (DT) plasmas, which must be precisely known for current small-margin ICF target designs to ignite. We have developed a time-dependent orbital-free density functional theory (TD-OF-DFT) method for ab initio investigations of the charged-particle stopping power of warm dense matter. Our current dependent TD-OF-DFT calculations have reproduced the recently well-characterized stopping power experiment in warm dense beryllium. For α-particle stopping in warm and solid-density DT plasmas, the ab initio TD-OF-DFT simulations show a lower stopping power up to ∼25% in comparison with three stopping-power models often used in the high-energy-density physics community.

15.
Phys Rev Lett ; 121(9): 095001, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230875

RESUMO

Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann-battery effect. Using fully kinetic 3D simulations, we show the full evolution of the magnetic fields and plasma in these experiments, including self-consistent magnetic field generation about the expanding plume. The collision of the two plasmas drives the formation of a current sheet, where reconnection occurs in a strongly time- and space-dependent manner, demonstrating a new 3D reconnection mechanism. Specifically, we observe a fast, vertically localized Biermann-mediated reconnection, an inherently 3D process where the temperature profile in the current sheet coupled with the out-of-plane ablation density profile conspires to break inflowing field lines, reconnecting the field downstream. Fast reconnection is sustained by both the Biermann effect and the traceless electron pressure tensor, where the development of plasmoids appears to modulate the contribution of the latter. We present a simple and general formulation to consider the relevance of Biermann-mediated reconnection in general astrophysical scenarios.

16.
Phys Rev Lett ; 119(6): 065001, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949647

RESUMO

Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K-edge locations as ab initio calculations provide.

17.
Phys Rev Lett ; 119(2): 025001, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753335

RESUMO

We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

18.
Phys Rev Lett ; 119(19): 195001, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219482

RESUMO

It is shown that inertial confinement fusion targets designed with low implosion velocities can be shock-ignited using laser-plasma interaction generated hot electrons (hot-e's) to obtain high energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e's which can be produced only at a large laser facility like the National Ignition Facility, with the laser-to-hot-e conversion efficiency greater than 10% at laser intensities ∼10^{16} W/cm^{2}.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33304033

RESUMO

We discuss a number of aspects regarding the physics of H 2 + and H2. This includes low-energy electron scattering processes and the interaction of both weak (perturbative) and strong (ultrafast/intense) electromagnetic radiation with those systems.

20.
J Vet Pharmacol Ther ; 40(3): 270-278, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27593531

RESUMO

The hepatic activities of uridine diphosphate glucuronosyltransferase (UGT) and sulfotransferase (SULT) of male Ross 708 broiler chickens at the age of 1, 7, 14, 28, and 56 days and male Camborough-29 pigs at the age of 1 day and 2, 5, 10, and 20 weeks were investigated. Glucuronidation and sulfation of 4-nitrophenol were used to evaluate the activities. Porcine hepatic UGT and SULT activities were low at birth, peaked at around 5-10 weeks, and then declined. Both hepatic UGT and SULT activities of chickens were high at hatch and declined. Chicken hepatic UGT activity had a peak at the age of 28 days. Affinity of hepatic SULT to 4-nitrophenol is similar in chickens and pigs, but the affinity of hepatic UGT in pigs was about 10 times higher than that in chickens. 4-nitrophenol was predominantly conjugated by SULT instead of UGT in chicken livers from hatch to day 56. Conversely, hepatic UGT contributed predominantly in 4-nitrophenol conjugation than the SULT in pigs from birth to 20 weeks. Therefore, age has significant impact on hepatic activities of UGT and SULT, and the importance of UGT and SULT on conjugation is different in chickens and pigs.


Assuntos
Galinhas/metabolismo , Glucuronosiltransferase/metabolismo , Sulfotransferases/metabolismo , Suínos/metabolismo , Difosfato de Uridina/metabolismo , Animais , Masculino , Microssomos Hepáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA