Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochem Biophys Res Commun ; 727: 150307, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917618

RESUMO

The testis-specific histone variant H3T plays a crucial role in chromatin reorganization during spermatogenesis by destabilizing nucleosomes. However, the structure basis for the nucleosome instability driven by H3T is not fully understand. In this study, we determinate the crystal structure of H3T-H4 in complex with histone chaperone ASF1a at 2.8 Å resolution. Our findings reveal that H3T-H4 binds ASF1a similarly to the conventional H3.1-H4 complex. However, significant structural differences are observed in the H3 α1 helix, the N- and C-terminal region of α2, and N-terminal region of L2. These differences are driven by H3T-specific residues, particularly Val111. Unlike the smaller Ala111 in H3.1, we find that bulkier residue Val111 fits well within the ASF1-H3T-H4 complex, but is difficult to arrange in nucleosome structure. Given that H3.1-Ala111/H3T-Val111 is located at the DNA binding and tetramerization interface of H3-H4, it is likely that Ala111Val substitution will lead to the instability of the corresponding area in nucleosome, contributing to instability of H3T-containing nucleosome. These structural findings may elucidate the role of H3T in chromatin reorganization during spermatogenesis.


Assuntos
Histonas , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Histonas/metabolismo , Histonas/química , Histonas/genética , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética
2.
Inflammopharmacology ; 31(3): 1511-1527, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36976486

RESUMO

BACKGROUND: The primary pathogenic factors of Alzheimer's disease (AD) have been identified as oxidative stress, inflammatory damage, and apoptosis. Chrysophanol (CHR) has a good neuroprotective effect on AD, however, the potential mechanism of CHR remains unclear. PURPOSE: In this study, we focused on the ROS/TXNIP/NLRP3 pathway to determine whether CHR regulates oxidative stress and neuroinflammation. METHODS: D-galactose and Aß25-35 combination were used to build an in vivo model of AD, and the Y-maze test was used to evaluate the learning and memory function of rats. Morphological changes of neurons in the rat hippocampus were observed using hematoxylin and eosin (HE) staining. AD cell model was established by Aß25-35 in PC12 cells. The DCFH-DA test identified reactive oxygen species (ROS). The apoptosis rate was determined using Hoechst33258 and flow cytometry. In addition, the levels of MDA, LDH, T-SOD, CAT, and GSH in serum, cell, and cell culture supernatant were detected by colorimetric method. The protein and mRNA expressions of the targets were detected by Western blot and RT-PCR. Finally, molecular docking was used to further verify the in vivo and in vitro experimental results. RESULTS: CHR could significantly improve learning and memory impairment, reduce hippocampal neuron damage, and reduce ROS production and apoptosis in AD rats. CHR could improve the survival rate, and reduce the oxidative stress and apoptosis in the AD cell model. Moreover, CHR significantly decreased the levels of MDA and LDH, and increased the activities of T-SOD, CAT, and GSH in the AD model. Mechanically, CHR significantly reduced the protein and mRNA expression of TXNIP, NLRP3, Caspase-1, IL-1ß, and IL-18, and increase TRX. CONCLUSIONS: CHR exerts neuroprotective effects on the Aß25-35-induced AD model mainly by reducing oxidative stress and neuroinflammation, and the mechanism may be related to ROS/TXNIP/NLRP3 signaling pathway.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Simulação de Acoplamento Molecular , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Proteínas de Ciclo Celular/uso terapêutico
5.
World J Microbiol Biotechnol ; 31(10): 1641-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164057

RESUMO

Fermentation at higher temperatures can potentially reduce the cooling cost in large-scale fermentation and reduce the contamination risk. Thus, the thermotolerant yeast, Kluyveromyces marxianus, which can grow and ferment at elevated temperatures, is a promising biotechnological tool for future applications. However, the promoters used in K. marxianus are not well characterized, especially at elevated temperatures, which is important in efficient metabolic pathway construction. In this study, six constitutive promoters (P(TDH3), P(PGK), and P(ADH1) from both Saccharomyces cerevisiae and K. marxianus) were evaluated in K. marxianus through the heterologous expression of the KlLAC4, GUSA, and SH BLE genes at various temperatures, with various carbon sources and oxygen conditions. The expression was evaluated at the transcription and protein level using real-time PCR and protein activity determination to eliminate the effect of heterologous protein stability. While the transcription of all the promoters decreased at higher temperatures, the order of their promoting strength at various temperatures with glucose as the carbon source was P(KmPGK) > P(KmTDH3) > P(ScPGK) > P(ScTDH3) > P(KmADH1) > P(ScADH1). When glycerol or xylose was supplied as the carbon source at 42 °C, the order of promoter strength was P(KmPGK) > P(ScPGK) > P(KmADH1) > P(ScADH1) > P(ScTDH3) > P(KmTDH3). The promoter activity of P TDH3 decreased significantly, while the promoter activity of both of the P(ADH1) promoters increased. Oxygen conditions had non-significant effect. The results of this study provide important information for fine-tuned pathway construction for the metabolic engineering of K. marxianus.


Assuntos
Expressão Gênica/efeitos da radiação , Kluyveromyces/genética , Kluyveromyces/efeitos da radiação , Regiões Promotoras Genéticas , Perfilação da Expressão Gênica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Temperatura
6.
J Agric Food Chem ; 72(1): 783-793, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38141024

RESUMO

N-Acetylglucosamine deacetylase from Cyclobacterium marinum (CmCBDA) is a highly effective and selective biocatalyst for the production of d-glucosamine (GlcN) from N-acetylglucosamine (GlcNAc). However, the underlying catalytic mechanism remains elusive. Here, we show that CmCBDA is a metalloenzyme with a preference for Ni2+ over Mn2+. Crystal structures of CmCBDA in complex with Ni2+ and Mn2+ revealed slight remodeling of the CmCBDA active site by the metal ions. We also demonstrate that CmCBDA exists as a mixture of homodimers and monomers in solution, and dimerization is indispensable for catalytic activity. A mutagenesis analysis also indicated that the active site residues Asp22, His72, and His143 as well as the residues involved in dimerization, Pro52, Trp53, and Tyr55, are essential for catalytic activity. Furthermore, a mutation on the protein surface, Lys219Glu, resulted in a 2.3-fold improvement in the deacetylation activity toward GlcNAc. Mechanistic insights obtained here may facilitate the development of CmCBDA variants with higher activities.


Assuntos
Acetilglucosamina , Amidoidrolases , Acetilglucosamina/metabolismo , Amidoidrolases/química , Glucosamina/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-39052059

RESUMO

The neuroprotective function of ginsenoside Rb1 (GRb1) in cerebral ischemia-reperfusion (I/R) was lately emphasized. However, whether GRb1 plays a regulatory role on endoplasmic reticulum (ER) stress-associated pathway in cerebral I/R damage is still unclear. The aim of this study is to explore the function of GRb1 in cerebral ischemia-induced ER stress and the underlying mechanism related to IRE1/TRAF2/JNK pathway. Longa method, cerebral infarct volume, and HE staining were used to evaluate the efficacy of GRb1 in mice with a mouse model of middle cerebral artery occlusion reperfusion (MCAO/R). We also investigated the effect and mechanism of GRb1 against ischemic stroke using in vitro oxygen-glucose deprivation reperfusion (OGD/R) model. We found that GRb1 could improve neurological scores, infarct volume, and histological injury in ischemic mice. Ischemic attack also activated neuronal apoptosis and ER stress, and this effect was attenuated by GRb1. In addition, GRb1 significantly reduced I/R-induced IRE1-TRAF2 interaction, IRE1, and JNK phosphorylation. The present study also confirmed that GRb1 significantly improved OGD/R-induced PC12 cells injury. GRb1 could decrease ER stress in OGD/R-injured PC12 cells, which was reflected by the decreased expression of GRP78 and CHOP. The ER stress inducer tunicamycin partially prevented the effects of GRb1 on cell viability, ER stress, and apoptosis after OGD/R, whereas the ER stress inhibitor 4-PBA exerted the opposite effect. Moreover, GRb1 markedly decreased IRE1-TRAF2 interaction, IRE1, and JNK phosphorylation in the presence of OGD/R insult. Furthermore, JNK inhibitor SP600125 and IRE1 inhibitor DBSA pretreatment further promoted the inhibition of GRb1 on ER stress induction and cell damage induced by OGD/R. Molecular docking further elucidated that the mechanism by which GRb1 improves cerebral ischemia maybe related to its direct binding to the kinase domain of IRE1, which in turn inhibited the phosphorylation of IRE1. Collectively, these results demonstrated that GRb1 reduced ischemic stroke-induced apoptosis through the ER stress-associated IRE1/TRAF2/JNK pathway and GRb1 has the potential as a protective drug for the treatment of cerebral ischemia.

8.
Heliyon ; 9(2): e13076, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816257

RESUMO

Gastric cancer (GC) is a digestive tract malignant tumor and causes the third cancer-related mortality in the world. Aberrant expression of Ribosomal Protein L31 (RPL31) has been reported in several human cancers. The aim of this study was to explore the role and possible biological functions of RPL31 in GC. We firstly employed immunohistochemistry to examine RPL31 expression in tumor and para-cancerous tissues. By lentiviral transfection, we successfully constructed an RPL31-knockdown GC cell model and performed functional validation to reveal the effects of RPL31 on proliferation, apoptosis, cycle, migration, and tumor growth. Our data indicated that RPL31 was abundantly expressed in GC tissues and cell lines (AGS and MGC-803). In addition, RPL31 expression was positively correlated with the extent of tumor infiltrate of GC patients. Functionally, silencing RPL31 in AGS and MGC-803 cells significantly limited the ability of proliferation and migration, promoted cell apoptosis. Consistently, RPL31-knockdown GC cells inhibited the growth of xenografts in mice. Moreover, preliminary analysis on the downstream regulation mechanism revealed that RPL31 functioned as a tumor promoter through targeting JAK-STAT signaling pathway. In conclusion, inhibition of abnormally high expression of RPL31 in GC may be a potential therapeutic strategy for this disease.

9.
3 Biotech ; 11(9): 414, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34485007

RESUMO

Thermoascus aurantiacus is a thermophilic fungus that belongs to the ascomycetous class and has attracted increasing interest for its ability to produce thermostable cellulolytic enzymes and growth at elevated temperatures. However, studies on this organism have been limited because of the lack of a genetic manipulation system. Here, we developed a polyethylene glycol (PEG)-mediated transformation system for T. aurantiacus based on an orotidine-5'-monophosphate decarboxylase (pyrG)-deficient mutant, with this method achieving a transformation efficiency of 33 ± 3 transformants per microgram of DNA. Intracellular or secretory expression of heterologous proteins, including green fluorescent protein, ß-galactosidase and α-amylase, in T. aurantiacus was successful under the inducible endogenous cellobiohydrolase and endoglucanase gene promoter or the constitutive heterologous pyruvate decarboxylase and enolase gene promoter from Trichoderma reesei. To the best of our knowledge, this is the first report on PEG-mediated transformation of T. aurantiacus, which sets the foundation for strain improvement for biotechnological applications and functional genomic studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02963-w.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA