Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38124544

RESUMO

Physical exercise has been shown to have an impact on memory and hippocampal function across different age groups. Nevertheless, the influence and mechanisms underlying how voluntary exercise during puberty affects memory are still inadequately comprehended. This research aims to examine the impacts of self-initiated physical activity throughout adolescence on spatial memory. Developing mice were exposed to a 4-wk voluntary wheel running exercise protocol, commencing at the age of 30 d. After engaging in voluntary wheel running exercise during development, there was an enhancement in spatial memory. Moreover, hippocampal dentate gyrus and CA3 neurons rather than CA1 neurons exhibited an increase in the miniature excitatory postsynaptic currents and miniature inhibitory postsynaptic currents. In addition, there was an increase in the expression of NR2A/NR2B subunits of N-methyl-D-aspartate receptors and α1GABAA subunit of gamma-aminobutyric acid type A receptors, as well as dendritic spine density, specifically within dentate gyrus and CA3 regions rather than CA1 region. The findings suggest that voluntary exercise during development can enhance spatial memory in mice by increasing synapse numbers and improving synaptic transmission in hippocampal dentate gyrus and CA3 regions, but not in CA1 region. This study sheds light on the neural mechanisms underlying how early-life exercise improves cognitive function.


Assuntos
Giro Denteado , Memória Espacial , Camundongos , Animais , Giro Denteado/metabolismo , Atividade Motora , Maturidade Sexual , Hipocampo/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA