Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 576(7786): 257-261, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776517

RESUMO

Every night across the world's oceans, numerous marine animals arrive at the surface of the ocean to feed on plankton after an upward migration of hundreds of metres. Just before sunrise, this migration is reversed and the animals return to their daytime residence in the dark mesopelagic zone (at a depth of 200-1,000 m). This daily excursion, referred to as diel vertical migration (DVM), is thought of primarily as an adaptation to avoid visual predators in the sunlit surface layer1,2 and was first recorded using ship-net hauls nearly 200 years ago3. Nowadays, DVMs are routinely recorded by ship-mounted acoustic systems (for example, acoustic Doppler current profilers). These data show that night-time arrival and departure times are highly conserved across ocean regions4 and that daytime descent depths increase with water clarity4,5, indicating that animals have faster swimming speeds in clearer waters4. However, after decades of acoustic measurements, vast ocean areas remain unsampled and places for which data are available typically provide information for only a few months, resulting in an incomplete understanding of DVMs. Addressing this issue is important, because DVMs have a crucial role in global ocean biogeochemistry. Night-time feeding at the surface and daytime metabolism of this food at depth provide an efficient pathway for carbon and nutrient export6-8. Here we use observations from a satellite-mounted light-detection-and-ranging (lidar) instrument to describe global distributions of an optical signal from DVM animals that arrive in the surface ocean at night. Our findings reveal that these animals generally constitute a greater fraction of total plankton abundance in the clear subtropical gyres, consistent with the idea that the avoidance of visual predators is an important life strategy in these regions. Total DVM biomass, on the other hand, is higher in more productive regions in which the availability of food is increased. Furthermore, the 10-year satellite record reveals significant temporal trends in DVM biomass and correlated variations in DVM biomass and surface productivity. These results provide a detailed view of DVM activities globally and a path for refining the quantification of their biogeochemical importance.


Assuntos
Migração Animal , Animais , Oceanos e Mares , Comunicações Via Satélite , Fatores de Tempo
2.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856109

RESUMO

Irreversible ultrafast events are prevalent in nature, yet their capture in real time poses significant challenges. Traditional single-shot imaging technologies, which utilize a single optical pump and single delayed electron probe, offer high spatiotemporal resolution but fail to capture the entire dynamic evolutions. Here, we introduce a novel imaging method employing a single optical pump and delayed multiple electron probes. This approach, facilitated by an innovative deflector in ultrafast electron microscopy, enables the acquisition of nine frames per exposure, paving the way for statistical and quantitative analyses. We have developed an algorithm that corrects frame-by-frame distortions, realizing a cross-correlation enhancement of ∼26%. Achieving ∼12 nm and 20 ns resolution, our method allows for the comprehensive visualization of laser-induced behaviors in Au nanoparticles, including merging, jumping, and collision processes. Our results demonstrate the capability of this multiframe imaging technique to document irreversible processes across materials science and biology with unprecedented nanometer-nanosecond precision.

3.
Opt Express ; 31(18): 29107-29118, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710717

RESUMO

The attenuation coefficient of natural waters plays a significant role in our understanding of hydrology from both the oceanographic and biological point of view. The advent of near-continuous observations by sophisticated space-based lidars now offers an unprecedented opportunity to characterize attenuation coefficients over open oceans on global and regional scales. At present, however, literature reports of lidar-derived attenuation coefficient estimates (klidar, m-1) in oceanic waters are very limited. In this study, we present a global survey of klidar derived from ATLAS/ICESat-2 nighttime measurements. Our results augment the existing passive sensor ocean color data set with a new diurnal component and extend the record to now include previously unavailable polar nighttime observations. The values of ATLAS measured klidar at 532 nm are between 0.045 and 0.39 m-1 with the higher values (>0.15 m-1) correlated with coastal waters and sea ice covered oceans. The average klidar in clearest oligotrophic ocean gyres is ∼0.058 ± 0.012 m-1 at 532 nm. The results reported here demonstrate the feasibility of using ATLAS/ICESat-2 lidar measurements for global klidar studies, which will in turn provide critical insights that enable climate models to correctly describe the amount of light present under sea ice, and for heat deposition studies in the upper ocean.

4.
Opt Lett ; 48(1): 13-16, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563362

RESUMO

Combined lidar and polarimeter retrievals of aerosol, cloud, and ocean microphysical properties involve single-scattering cloud calculations that are time consuming. We create a look-up table to speed up these calculations for water droplets in the atmosphere. In our new Lorenz-Mie look-up table we tabulate the light scattering by an ensemble of homogeneous isotropic spheres at wavelengths starting from 0.35 µm. The look-up table covers liquid water cloud particles with radii in the range of 0.001-500 µm while gaining an increase of up to 104 in computational speed. The covered complex refractive indices range from 1.25 to 1.36 for the real part and from 0 to 0.001 for the imaginary part. We show that we can precisely compute inherent optical properties for the particle size distributions ranging up to 100 µm for the effective radius and up to 0.6 for the effective variance. We test wavelengths from 0.35 to 2.3 µm and find that the elements of the normalized scattering matrix as well as the asymmetry parameter, the absorption, backscatter, extinction, and scattering coefficients are precise to within 1% for 96.7%-100% of cases depending on the inherent optical property. We also provide an example of using the look-up table with in situ measurements to determine agreement with remote sensing. The table together with C++, Fortran, MATLAB, and Python codes to interpolate the complex refractive index and apply different particle size distributions are freely available online.

5.
Proc Natl Acad Sci U S A ; 117(32): 18998-19006, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719114

RESUMO

The change in planetary albedo due to aerosol-cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth's climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol-cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm-3 and 24 cm-3 By extension, the radiative forcing since 1850 from aerosol-cloud interactions is constrained to be -1.2 W⋅m-2 to -0.6 W⋅m-2 The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol-cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models.

6.
Opt Express ; 30(20): 36509-36525, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258578

RESUMO

In shallow nearshore waters, seafloor heights and properties can be accurately measured by the current generation of space-based elastic backscatter lidars: CALIOP, flying aboard the CALIPSO satellite and ATLAS aboard ICESat-2. CALIOP's 532 nm volume depolarization ratios, together with the ratios of the attenuated backscatter coefficients measured at 532 nm and 1064 nm, can efficiently distinguish optically shallow waters from nearby land surfaces and deep oceans. ATLAS's high vertical resolution photon measurements can accurately determine seafloor depths in shallow water bodies, characterize seafloor reflectance, and provide assessments of ocean biomass concentrations in the intervening water column. By adding bathymetry, seafloor optical properties (e.g., reflectance, depolarization ratio and attenuated backscatter), and nighttime observations, space lidar measurements obtained in nearshore waters can provide a wealth of unique information to complement existing satellite-based ocean color remote sensing capabilities. The results reported here demonstrate the feasibility of using satellite lidars for nearshore seafloor ecosystem analyses, which in turn provide critical insights for studies of coastal navigation and seabed topography changes due to disasters, as well as the temporal and spatial morphological evolution of coastal systems.

7.
Opt Express ; 29(3): 4504-4522, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771027

RESUMO

We developed a fast and accurate polynomial based atmospheric correction (POLYAC) algorithm for hyperspectral radiometric measurements, which parameterizes the atmospheric path radiances using aerosol properties retrieved from co-located multi-wavelength multi-angle polarimeter (MAP) measurements. This algorithm has been applied to co-located spectrometer for planetary exploration (SPEX) airborne and research scanning polarimeter (RSP) measurements, where SPEX airborne was used as a proxy of hyperspectral radiometers, and RSP as the MAP. The hyperspectral remote sensing reflectance obtained from POLYAC is accurate when compared to Aerosol Robotic Network (AERONET), and Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. POLYAC provides a robust alternative atmospheric correction algorithm for hyperspectral or multi-spectral radiometric measurements for scenes involving coastal oceans and/or absorbing aerosols, where traditional atmospheric correction algorithms are less reliable.

8.
Opt Lett ; 46(10): 2352-2355, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988581

RESUMO

The backscattered light from agglomerated debris particles shows that an approximate linear correlation exists between the logarithm of the geometric albedo $ \log(A )$ of polydispersions of agglomerated debris particles and their lidar linear or circular depolarization ratios, $ \unicode{x00B5}_L$ and $ \unicode{x00B5}_C$. The nature of the relationship depends on the complex refractive index of the particles in the distribution. This extension of the Umov law can be used for lidar and radar characterizations by placing constraints on the reflectivity of the particles. It suggests that an approximate inverse relationship exists between the lidar ratio and the lidar depolarization ratios whose scaling parameter depends on the refractive index of the aerosol population.

9.
Opt Express ; 26(2): A124-A135, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401902

RESUMO

The single scattering properties of hydrosols play an important role in the study of ocean optics, ocean color remote sensing, and ocean biogeochemistry research. Measurements show that hydrosols can be of various sizes and shapes, suggesting general non-spherical models should be considered for the study of single scattering properties of hydrosols. In this work, light scattering by non-spherical hydrosols are modeled by randomly oriented spheroids with the Amsterdam discrete dipole approximation (ADDA) code. We have defined two new parameters to quantify the degree of optical non-sphericity (DONS) and investigated the dependence of DONS on refractive index, size, and aspect ratio. For particles with non-unitary aspect ratios, the magnitude of DONS increases as the refractive index and particle size increase. The dependence of the backscattering fraction on the non-sphericity, size, and refractive index of hydrosols is also studied. It is found that the backscattering fraction is larger for smaller particles as well as for particles with higher refractive indices. Absorptive hydrosols generally have a lower backscattering fraction than non-absorptive hydrosols. This study of light scattering by non-spherical hydrosols would lead to better radiative transfer models in ocean waters and new remote sensing techniques of hydrosol compositions.

10.
Opt Express ; 26(7): 8968-8989, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715856

RESUMO

Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean. Atmospheric correction, which obtains water-leaving radiance from the total radiance measured by satellite-borne or airborne sensors, remains a challenging task for coastal waters due to the complex optical properties of aerosols and ocean waters. In this paper, we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters, which uses coupled atmosphere and ocean radiative transfer model to fit polarized radiance measurements at multiple viewing angles and multiple wavelengths. Ocean optical properties are characterized by a generalized bio-optical model with direct accounting for the absorption and scattering of phytoplankton, colored dissolved organic matter (CDOM) and non-algal particles (NAP). Our retrieval algorithm can accurately determine the water-leaving radiance and aerosol properties for coastal waters, and may be used to improve the atmospheric correction when apply to a hyperspectral ocean color instrument.

11.
Appl Opt ; 57(26): 7472-7481, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461813

RESUMO

Retrievals of particulate optical depths and extinction coefficients from the cloud-aerosol lidar with orthogonal polarization (CALIOP) instrument deployed on the CALIPSO satellite mainly rely on a single global mean extinction-to-backscatter ratio, also known as the lidar ratio. However, the lidar ratio depends on the microphysical properties of particulates. An alternative approach is adopted to infer single-layer semi-transparent cirrus optical depths (CODs) over the open ocean that does not rely on an assumed lidar ratio. Instead, the COD is inferred directly from backscatter measurements obtained from the CALIOP lidar in conjunction with collocated sea surface wind speed data obtained from AMSR-E. This method is based on a Gram-Charlier ocean surface reflectance model relating wind-driven wave slope variances to sea surface wind speeds. To properly apply this method, the impact of multiple scattering between the sea surface and ice clouds should be taken into account. We take advantage of the 532 nm cross-polarization feature of CALIOP and introduce an empirical method based on the depolarization change at the sea surface to correct for potential bias in sea surface backscatter caused by whitecaps, bubbles, foam, and multiple scattering. After the correction, the COD can be derived for individual CALIOP retrievals in a single cloud layer over the ocean with this method. The global mean COD was found to be roughly 14% higher than the current values determined by the Version 4 CALIOP extinction retrieval algorithm. This study is relevant to future improvements of CALIOP operational products and is expected to lead to more accurate COD retrievals.

12.
Remote Sens Environ ; 206: 375-390, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414567

RESUMO

Comprehensive polarimetric closure is demonstrated using observations from two in-situ polarimeters and Vector Radiative Transfer (VRT) modeling. During the Ship-Aircraft Bio-Optical Research (SABOR) campaign, the novel CCNY HyperSAS-POL polarimeter was mounted on the bow of the R/V Endeavor and acquired hyperspectral measurements from just above the surface of the ocean, while the NASA GISS Research Scanning Polarimeter was deployed onboard the NASA LaRC's King Air UC-12B aircraft. State-of-the-art, ancillary measurements were used to characterize the atmospheric and marine contributions in the VRT model, including those of the High Spectral Resolution Lidar (HSRL), the AErosol RObotic NETwork for Ocean Color (AERONET-OC), a profiling WETLabs ac-9 spectrometer and the Multi-spectral Volume Scattering Meter (MVSM). An open-ocean and a coastal scene are analyzed, both affected by complex aerosol conditions. In each of the two cases, it is found that the model is able to accurately reproduce the Stokes components measured simultaneously by each polarimeter at different geometries and viewing altitudes. These results are mostly encouraging, considering the different deployment strategies of RSP and HyperSAS-POL, which imply very different sensitivities to the atmospheric and ocean contributions, and open new opportunities in above-water polarimetric measurements. Furthermore, the signal originating from each scene was propagated to the top of the atmosphere to explore the sensitivity of polarimetric spaceborne observations to changes in the water type. As expected, adding polarization as a measurement capability benefits the detection of such changes, reinforcing the merits of the full-Stokes treatment in modeling the impact of atmospheric and oceanic constituents on remote sensing observations.

13.
J Quant Spectrosc Radiat Transf ; 220: 119-122, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31631910

RESUMO

Lasers with orbital angular momentum (OAM) have potential applications in communication technology, manipulation of particles, and remote sensing. Because of its unusual light-scattering properties, the OAM laser's interaction with a molecular atmosphere must be studied to ensure that it is not lossy for communication or remote-sensing applications that involve its transmission through an atmospheric environment. In this study, the finite-difference time-domain (FDTD) method [21] is applied to calculate the light scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with OAM by very small dielectric particles. Not like Lorentz-Mie solutions, the FDTD method can calculate for particles off the central axis of the LG beam. It is found that when the particles are very small, and the topological charge number of the OAM of a laser is not extremely large, the laser's OAM has little effect on the scattering phase function. This suggests that Rayleigh theory can be applied directly to calculate the light scattering by atmospheric molecules. The transmission of a laser beam with OAM in a molecular atmosphere is not different from that of a regular Gaussian beam.

14.
Opt Express ; 25(15): 17356-17363, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789227

RESUMO

Regular photon sieve (PS) may only have up to ~25% transmission of light. The low transmission limits its applications in many fields such as satellite remote sensing when the reflected light incident on the PS is relatively weak. Binary PS was developed to overcome the low transmission problem of PS. However, binary PS which involves using different optical materials/thicknesses in different zones of the PS at a nanometer or micron scale, is not easy to manufacture. Therefore, in this study, we developed a fully transparent PS concept. We can use laser photolithography to simply make holes on a sheet of fully transparent material. With specifically designed optical thickness and PS-patterned pinholes, the transparent sheet can effectively focus light to its focal point. This concept is validated both by the finite-difference time domain (FDTD) modeling and by laboratory prototypes in this study.

15.
Opt Express ; 25(16): A689-A708, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041040

RESUMO

The top-of-atmosphere (TOA) radiation field from a coupled atmosphere-ocean system (CAOS) includes contributions from the atmosphere, surface, and water body. Atmospheric correction of ocean color imagery is to retrieve water-leaving radiance from the TOA measurement, from which ocean bio-optical properties can be obtained. Knowledge of the absolute and relative magnitudes of water-leaving signal in the TOA radiation field is important for designing new atmospheric correction algorithms and developing retrieval algorithms for new ocean biogeochemical parameters. In this paper we present a systematic sensitivity study of water-leaving contribution to the TOA radiation field, from 340 nm to 865 nm, with polarization included. Ocean water inherent optical properties are derived from bio-optical models for two kinds of waters, one dominated by phytoplankton (PDW) and the other by non-algae particles (NDW). In addition to elastic scattering, Raman scattering and fluorescence from dissolved organic matter in ocean waters are included. Our sensitivity study shows that the polarized reflectance is minimized for both CAOS and ocean signals in the backscattering half plane, which leads to numerical instability when calculating water leaving relative contribution, the ratio between polarized water leaving and CAOS signals. If the backscattering plane is excluded, the water-leaving polarized signal contributes less than 9% to the TOA polarized reflectance for PDW in the whole spectra. For NDW, the polarized water leaving contribution can be as much as 20% in the wavelength range from 470 to 670 nm. For wavelengths shorter than 452 nm or longer than 865 nm, the water leaving contribution to the TOA polarized reflectance is in general smaller than 5% for NDW. For the TOA total reflectance, the water-leaving contribution has maximum values ranging from 7% to 16% at variable wavelengths from 400 nm to 550 nm from PDW. The water leaving contribution to the TOA total reflectance can be as large as 35% for NDW, which is in general peaked at 550 nm. Both the total and polarized reflectances from water-leaving contributions approach zero in the ultraviolet and near infrared bands. These facts can be used as constraints or guidelines when estimating the water leaving contribution to the TOA reflectance for new atmospheric correction algorithms for ocean color imagery.

16.
Opt Express ; 25(8): A223-A239, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437917

RESUMO

Inelastic scattering plays an important role in ocean optics. The main inelastic scattering mechanisms include Raman scattering, fluorescence by colored dissolved organic matter (FDOM), and fluorescence by chlorophyll. This paper reports an implementation of all three inelastic scattering mechanisms in the exact vector radiative transfer model for coupled atmosphere and ocean Systems (CAOS). Simulation shows that FDOM contributes to the water radiation field in the broad visible spectral region, while chlorophyll fluorescence is limited in a narrow band centered at 685 nm. This is consistent with previous findings in the literature. The fluorescence distribution as a function of depth and viewing angle is presented. The impacts of fluorescence to the degree of linear polarization (DoLP) and orientation of the polarization ellipse (OPE) are studied. The DoLP is strongly influenced by inelastic scattering at wavelengths with strong inelastic scattering contribution. The OPE is less affected by inelastic scattering but it has a noticeable impact, in terms of the angular region of positive polarization, in the backward direction. This effect is more apparent for deeper water depth.

17.
Appl Opt ; 56(14): 4105-4112, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047543

RESUMO

Polarized radiation fields in a turbid medium are influenced by single-scattering properties of scatterers. It is common that media contain two or more types of scatterers, which makes it essential to properly mix single-scattering properties of different types of scatterers in the vector radiative transfer theory. The vector radiative transfer solvers can be divided into two basic categories: the stochastic and deterministic methods. The stochastic method is basically the Monte Carlo method, which can handle scatterers with different scattering properties explicitly. This mixture scheme is called the external mixture scheme in this paper. The deterministic methods, however, can only deal with a single set of scattering properties in the smallest discretized spatial volume. The single-scattering properties of different types of scatterers have to be averaged before they are input to deterministic solvers. This second scheme is called the internal mixture scheme. The equivalence of these two different mixture schemes of scattering properties has not been demonstrated so far. In this paper, polarized radiation fields for several scattering media are solved using the Monte Carlo and successive order of scattering (SOS) methods and scattering media contain two types of scatterers: Rayleigh scatterers (molecules) and Mie scatterers (aerosols). The Monte Carlo and SOS methods employ external and internal mixture schemes of scatterers, respectively. It is found that the percentage differences between radiances solved by these two methods with different mixture schemes are of the order of 0.1%. The differences of Q/I, U/I, and V/I are of the order of 10-5∼10-4, where I, Q, U, and V are the Stokes parameters. Therefore, the equivalence between these two mixture schemes is confirmed to the accuracy level of the radiative transfer numerical benchmarks. This result provides important guidelines for many radiative transfer applications that involve the mixture of different scattering and absorptive particles.

18.
J Quant Spectrosc Radiat Transf ; 188: 200-213, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32440026

RESUMO

Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth- atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of ~ 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(2): 491-6, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-30280541

RESUMO

In this paper, two-dimensional (2D) correlation spectroscopy analysis was applied to investigate the influence of the main component in blood and the systematic drift during the measurement on the specificity of glucose in the near-infrared (NIR) spectroscopy. First, the NIR transmittance of glucose aqueous solutions was measured and the 2D correlation NIR spectra were calculated under the perturbation of glucose concentration. Based on the comparative analysis for synchronous and asynchronous 2D correlation spectra, the characteristic absorption peaks of glucose in the combination band and the overtone band were determined. Then a small amount of albumin was added into glucose aqueous solutions, and the transmittance was recorded to perform 2D correlation spectroscopy analysis under the perturbation of glucose concentration. However, the absorption of glucose in the first overtone band (1590nm) and second overtone band (1195nm) was no longer homologous in the 2D correlation spectra, which means that the albumin may reduce the specificity of glucose. Further, the oral glucose tolerance test of healthy volunteer was conducted and the NIR diffuse reflectance of left palm was collected in vivo. The 2D correlation analysis results showed that, the homology of glucose in the diffuse reflectance was also destroyed. Moreover, as the spectral variation from the glucose concentration change is too low to be covered by that induced by systematic drift easily, some background correction methods were usually required. For the transmittance experiment of glucose aqueous solutions and the diffuse reflectance experiment of human body, the pure water sample and 5% diffuse reflectance standard were used as the reference, respectively. Then 2D correlation spectroscopy was developed under the perturbation of measurement time. Results showed that, smaller band shift was observed in the slice spectra of 2D correlation synchronous spectra after the corresponding background correction, and the specificity of glucose was improved both in the in vitro and in vivo experiments. So for the non-invasive glucose sensing by NIR spectroscopy, the wavelengths should be chosen carefully to avoid the absorption band of some interfering components which may destroy the homology of glucose and make spectral interpretation more complicated. And the selection of reference samples for relative measurement is also important to improve the specificity of glucose.


Assuntos
Glicemia/análise , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Água
20.
Opt Express ; 24(26): A1618-A1634, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059358

RESUMO

There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA