Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
PLoS Pathog ; 20(2): e1012027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377149

RESUMO

Newcastle disease virus (NDV) has been extensively studied as a promising oncolytic virus for killing tumor cells in vitro and in vivo in clinical trials. However, the viral components that regulate the oncolytic activity of NDV remain incompletely understood. In this study, we systematically compared the replication ability of different NDV genotypes in various tumor cells and identified NP protein determines the oncolytic activity of NDV. On the one hand, NDV strains with phenylalanine (F) at the 450th amino acid position of the NP protein (450th-F-NP) exhibit a loss of oncolytic activity. This phenotype is predominantly associated with genotype VII NDVs. In contrast, the NP protein with a leucine amino acid at this site in other genotypes (450th-L-NP) can facilitate the loading of viral mRNA onto ribosomes more effectively than 450th-F-NP. On the other hand, the NP protein from NDV strains that exhibit strong oncogenicity interacts with eIF4A1 within its 366-489 amino acid region, leading to the inhibition of cellular mRNA translation with a complex 5' UTR structure. Our study provide mechanistic insights into how highly oncolytic NDV strains selectively promote the translation of viral mRNA and will also facilitate the screening of oncolytic strains for oncolytic therapy.


Assuntos
Vírus da Doença de Newcastle , Vírus Oncolíticos , Animais , Vírus da Doença de Newcastle/genética , Aminoácidos , Leucina , Vírus Oncolíticos/genética , RNA Mensageiro/genética , Biossíntese de Proteínas
2.
PLoS Pathog ; 20(2): e1011981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354122

RESUMO

Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.


Assuntos
Proteína HN , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/metabolismo , Proteína HN/metabolismo , Catepsina B , Apoptose , Lisossomos/metabolismo
3.
Vet Res ; 54(1): 92, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848995

RESUMO

The haemagglutinin-neuraminidase (HN) protein plays a crucial role in the infectivity and virulence of Newcastle disease virus (NDV). In a previous study, the mutant HN protein was identified as a crucial virulence factor for the velogenic variant NDV strain JS/7/05/Ch, which evolved from the prototypic vaccine strain Mukteswar. Furthermore, macrophages are the main susceptible target cells of NDV. However, the possible involvement of cellular molecules in viral infectivity remains unclear. Herein, we elucidate the crucial role of vimentin, an intermediate filament protein, in regulating NDV infectivity through targeting of the HN protein. Using LC‒MS/MS mass spectrometry and coimmunoprecipitation assays, we identified vimentin as a host protein that differentially interacted with prototypic and mutant HN proteins. Further analysis revealed that the variant NDV strain induced more significant rearrangement of vimentin fibres compared to the prototypic NDV strain and showed an interdependence between vimentin rearrangement and virus replication. Notably, these mutual influences were pronounced in HD11 chicken macrophages. Moreover, vimentin was required for multiple infection processes of the variant NDV strain in HD11 cells, including viral internalization, fusion, and release, while it was not necessary for those of the prototypic NDV strain. Collectively, these findings underscore the pivotal role of vimentin in NDV infection through targeting of the HN protein, providing novel targets for antiviral treatment strategies for NDV.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/fisiologia , Proteína HN/genética , Vimentina/genética , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Galinhas
4.
Avian Pathol ; 52(2): 89-99, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36571394

RESUMO

Duck viral hepatitis (DVH), mainly caused by duck hepatitis A virus (DHAV), is a highly fatal and rapidly spreading infectious disease of young ducklings that seriously jeopardizes the duck industry worldwide. DHAV type 1 (DHAV-1) is the main genotype responsible for disease outbreaks since 1945, and the disease situation is complicated by the emergence and dissemination of a novel genotype (DHAV-3) in some countries in Asia and Africa. Live attenuated DHAV vaccines are widely used to induce a considerable degree of protection in ducklings. Breeder ducks are immunized with inactivated or/and live DHAV vaccines to achieve satisfactory levels of passive immunity in progeny. In addition, novel characteristics of virus transmission, pathogenicity and pathogenesis of DHAV were recently characterized, necessitating the development of new vaccines and effective vaccination programmes against DVH. Therefore, a systematic dissection of the profiles, strengths and shortcomings of the available DHAV vaccines is essential. Moreover, to further increase the efficiency of vaccine production and administration, the development of next-generation DHAV vaccines using cutting-edge technologies is also required. In this review, based on a comprehensive summary of the research advances in the epidemiology, pathogenicity, and genomic features of DHAV, we focus on reviewing and analysing the features of the commercial and experimental DHAV vaccines. We also propose perspectives for disease control based on the specific disease situations in different countries. This review provides essential information for vaccine development and disease control of DVH.


Assuntos
Vírus da Hepatite do Pato , Hepatite Viral Animal , Infecções por Picornaviridae , Doenças das Aves Domésticas , Animais , Infecções por Picornaviridae/veterinária , Vacinas Atenuadas , Vacinação/veterinária , Patos
5.
Protein Expr Purif ; 192: 106046, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007721

RESUMO

Production of broadly-reactive antibodies is critical for universal immunodiagnosis of rapidly-evolving influenza viruses. Most monoclonal antibodies (mAbs) are generated in mice using the hybridoma technology which involves labor- and time-consuming screening and low yield issues. In this study, a recombinant antibody based on a broadly-reactive mAb against the hemagglutinin (HA) stalk of H7N9 avian influenza virus was expressed in CHO cells and its biological characteristics, cross-reactivity and epitope recognition were identified. The variable genes of the parental antibody were amplified and cloned into the antibody-expressing plasmids containing the constant genes of murine IgG1. The recombinant antibody was expressed in high yield and purity in CHO cells and showed similar features to the parental antibody, including negative hemagglutination inhibition activity against H7N9 virus and high binding activity with the H7N9 HA protein. Notably, the recombinant antibody exhibited a broad reactivity with different influenza subtypes belonging to group 1 and group 2, which was associated with its recognition of a highly-conserved epitope in the stalk, as observed for the parental antibody. Our results suggest that cell-based antibody expression system can be utilized as an important alternative to the hybridoma technology for antibody production for influenza virus diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Orthomyxoviridae/efeitos dos fármacos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/genética , Anticorpos Antivirais/isolamento & purificação , Células CHO , Cricetinae , Cricetulus , Reações Cruzadas , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/virologia , Camundongos , Orthomyxoviridae/classificação , Orthomyxoviridae/imunologia
6.
Vet Res ; 53(1): 99, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435802

RESUMO

Newcastle disease (ND) is one of the most economically devastating infectious diseases affecting the poultry industry. Virulent Newcastle disease virus (NDV) can cause high mortality and severe tissue lesions in the respiratory, gastrointestinal, neurological, reproductive and immune systems of poultry. Tremendous progress has been made in preventing morbidity and mortality caused by ND based on strict biosecurity and wide vaccine application. In recent decades, the continual evolution of NDV has resulted in a total of twenty genotypes, and genetic variation may be associated with disease outbreaks in vaccinated chickens. In some countries, the administration of genotype-matched novel vaccines in poultry successfully suppresses the circulation of virulent NDV strains in the field. However, virulent NDV is still endemic in many regions of the world, especially in low- and middle-income countries, impacting the livelihood of millions of people dependent on poultry for food. In ND-endemic countries, although vaccination is implemented for disease control, the lack of genotype-matched vaccines that can reduce virus infection and transmission as well as the inadequate administration of vaccines in the field undermines the effectiveness of vaccination. Dissection of the profiles of existing ND vaccines is fundamental for establishing proper vaccination regimes and developing next-generation vaccines. Therefore, in this article, we provide a broad review of commercial and experimental ND vaccines and promising new platforms for the development of next-generation vaccines.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Vírus da Doença de Newcastle , Aves Domésticas
7.
Virus Genes ; 58(5): 414-422, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751792

RESUMO

Newcastle disease virus (NDV) is an important pathogen for poultry and is used as a vector for developing novel poultry vaccines. Previous studies showed that foreign gene insertion in NDV vector decreases virulence determined by in vitro assays; however, the impact of foreign gene expression on the pathogenicity of NDV in susceptible chickens is not fully investigated. In this study, a recombinant NDV based on a velogenic strain carrying the orange fluorescent protein (OFP) gene between the phosphoprotein (P) and matrix (M) genes was generated using reverse genetics. Biological characteristics, including virus replication, virulence, and OFP expression, and the pathogenicity in chickens were evaluated. The recombinant NDV showed comparable replication capacity in eggs and cells as the parental virus, whereas OFP insertion resulted in a mild impairment of virulence, evidenced by longer mean death time in embryos. High OFP expression was detected in the cells inoculated with the recombinant NDV. In addition, the recombinant NDV induced delayed onset of disease, lower severity of clinical signs, and lower mortality in chickens compared to the parental virus. Moreover, high titers of the parental virus were detected in the spleen, lung, and intestinal tract, while no recombinant NDV was recovered from these tissues. Our findings suggest that in vitro characteristics related to the insertion of the OFP gene in a virulent NDV do not correlate to alteration of the pathogenicity in chickens. Our results provided new information regarding assessment of the impact of foreign gene expression on the pathogenicity of NDV.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Expressão Gênica , Vírus da Doença de Newcastle , Fosfoproteínas/genética , Vacinas Virais/genética
8.
Avian Pathol ; 51(4): 330-338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35297704

RESUMO

H7N9 subtype avian influenza virus (AIV) is endemic in poultry in China, and vaccination is used as the primary strategy for disease control. However, by current serological tests, monitoring H7N9 virus infection in vaccinated poultry is difficult because vaccine-induced antibodies are not readily distinguishable from field viruses. Therefore, a test differentiating infected and vaccinated animals (DIVA) is critical for monitoring H7N9 virus. However, no DIVA test is available for the H7N9 subtype AIV. This study investigated the potential of an epitope (peptide 11) spanning the haemagglutinin (HA) cleavage site as a DIVA antigen for the H7N9 virus. The results showed that the H7N9 virus infection sera and post-challenge sera obtained from H7N9-vaccinated chickens reacted with peptide 11, whereas the sera elicited by inactivated and viral-vectored H7N9 vaccines had no reactivity with this peptide. Peptide 11 was further split into two peptides at the HA cleavage site, and the truncated peptides failed to discriminate H7N9 infected and vaccinated chickens. Peptide 11 is located in a main surface loop in the HA protein, and contains highly conserved residues in the HA cleavage site among the H7N9 subtype and different subtypes of groups 1 and 2, suggesting the potential of this peptide as a broad DIVA antigen for influenza viruses. Our study highlighted that peptide 11 is a promising DIVA antigen, and serological tests based on this peptide may serve as useful tools for monitoring H7N9 virus infection in vaccinated poultry. RESEARCH HIGHLIGHTSThe epitope spanning the HA cleavage site is a potential DIVA antigen for H7N9 AIV.The epitope reacted with LP and HP H7N9 viruses.The epitope has potential as a broad DIVA antigen for influenza viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Doenças das Aves Domésticas , Animais , Anticorpos Antivirais , Formação de Anticorpos , Galinhas , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Peptídeos , Aves Domésticas
9.
J Gen Virol ; 102(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090092

RESUMO

Upregulation of matrix metalloproteinase (MMP)-14, a major driven force of extracellular-matrix (ECM) remodelling and cell migration, correlates with ECM breakdown and pathologic manifestation of genotype VII Newcastle disease virus (NDV) in chickens. However, the functional relevance between MMP-14 and pathogenesis of genotype VII NDV remains to be investigated. In this study, expression, biofunction and regulation of MMP-14 induced by genotype VII NDV were analysed in chicken peripheral blood mononuclear cells (PBMCs). The results showed that JS5/05 significantly increased expression and membrane accumulation of MMP-14 in PBMCs, correlating to enhanced collagen degradation and cell migration. Specific MMP-14 inhibition significantly impaired collagen degradation and migration of JS5/05-infected cells, suggesting dependence of these features on MMP-14. In addition, MMP-14 upregulation correlated with activation of the extracellular signal-regulated kinase (ERK) pathway upon JS5/05 infection, and blockage of the ERK signalling significantly suppressed MMP-14-mediated collagen degradation and migration of JS5/05-infected cells. Using a panel of chimeric NDVs derived from gene exchange between genotype VII and IV NDV, the fusion and haemagglutinin-neuraminidase genes were identified as the major viral determinants for MMP-14 expression and activity. In conclusion, MMP-14 was defined as a critical regulator of collagen degradation and cell migration of chicken PBMCs infected with genotype VII NDV, which may contribute to pathology of the virus. Our findings add novel information to the body of knowledge regarding virus-host biology and NDV pathogenesis.


Assuntos
Movimento Celular , Colágeno/metabolismo , Leucócitos Mononucleares/virologia , Metaloproteinase 14 da Matriz/metabolismo , Vírus da Doença de Newcastle/patogenicidade , Animais , Membrana Celular/metabolismo , Galinhas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genótipo , Proteína HN/genética , Proteína HN/metabolismo , Interações Hospedeiro-Patógeno , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Sistema de Sinalização das MAP Quinases , Vírus da Doença de Newcastle/genética , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Replicação Viral
10.
Arch Virol ; 166(3): 921-927, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33486628

RESUMO

Replication of Newcastle disease virus (NDV) is regulated by various host mechanisms, but the role of the extracellular signal-regulated kinase (ERK) pathway in regulating NDV replication is an open question. In this study, the relationship between the ERK pathway and NDV replication was investigated. NDV activated the ERK signaling in chicken embryo fibroblasts at the late stage of infection, correlating to expression of viral proteins. Specific blockage of the ERK pathway activation significantly decreased the transcription and translation levels of viral genes as well as virus replication and the cytopathogenic effect caused by NDV. Our results demonstrate that activation of the ERK pathway is required for NDV replication.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/genética , Replicação Viral/fisiologia , Animais , Linhagem Celular , Embrião de Galinha , Galinhas/virologia , Efeito Citopatogênico Viral/genética , Ativação Enzimática , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA